

INL/RPT-23-72783

Light Water Reactor Sustainability Program

EMRALD-HUNTER: An Embedded
Dynamic Human Reliability Analysis

Module for Probabilistic Risk
Assessment

May 2023

U.S. Department of Energy

Office of Nuclear Energy

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/RPT-23-72783

EMRALD-HUNTER: An Embedded Dynamic Human
Reliability Analysis Module for Probabilistic Risk

Assessment

Roger Lew,1 Jisuk Kim,2,3 Jooyoung Park,3 Thomas Ulrich,3
Ronald Boring,3 Steven Prescott,3 Torrey Mortenson3

1University of Idaho

2Korea Nuclear International Cooperation Foundation
3Idaho National Laboratory

May 2023

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Light Water Reactor Sustainability Program

This page intentionally left blank for pagination purposes

 iii

ABSTRACT

This report presents the integration of two dynamic risk tools recently developed under the U.S.
Department of Energy’s Light Water Reactor Sustainability Program. Event Modeling Risk Assessment
using Linked Diagrams (EMRALD) is a software package for modeling and running dynamic
probabilistic risk assessment. Human Unimodel for Nuclear Technology to Enhance Reliability
(HUNTER) is a software tool for dynamically modeling human reliability analysis. These two software
tools have been integrated as EMRALD-HUNTER to allow streamlined risk modeling of both plant
system and human operator reliability. Select features of HUNTER have been embedded in EMRALD to
facilitate better incorporation of human reliability analysis in dynamic probabilistic risk assessment
models. The integration represents one of the first software-based efforts to reconcile dynamic human
reliability analysis with probabilistic risk assessment models. Challenges and implementation solutions
encountered while developing the integration of the software are included through two demonstration
scenarios of the integrated tools: steam generator tube rupture and loss of feedwater events. The
EMRALD-HUNTER demonstration scenarios successfully benchmarked against previous HUNTER runs
and against empirical data from simulator studies. This report concludes with selection criteria for when
to use EMRALD-HUNTER and when to use the standalone version of HUNTER.

 iv

ACKNOWLEDGEMENTS

The authors wish to thank the Risk-Informed System Analysis (RISA) Pathway of the U.S.
Department of Energy’s Light Water Reactor Sustainability (LWRS) Program for its support of the
research activities presented in this report. In particular, we thank Svetlana Lawrence, pathway lead for
RISA, for championing the demonstrations found in this report. We also gratefully acknowledge the
postdoctoral support provided to the second author (Dr. Jisuk Kim) by the Korea Nuclear International
Cooperation Foundation.

 v

CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

FIGURES .. vii

TABLES ...x

ACRONYMS ... xi

1. INTRODUCTION ...1

2. INTRODUCTION TO HUNTER ...3
2.1 What is HUNTER? ...3
2.2 Background ...4

2.2.1 Static versus Dynamic HRA ..4
2.2.2 Dynamic versus Computational HRA ..5
2.2.3 GOMS-HRA ..7

2.3 Previous Instances of HUNTER ...9

3. INTRODUCTION TO EMRALD ...10
3.1 What is EMRALD? ...10
3.2 HRA Using EMRALD ..10

4. CONSIDERATIONS FOR INTEGRATING EMRALD AND HUNTER14
4.1 Need for Integration ..14
4.2 Dynamic HRA Functions Currently Available in HUNTER and EMRALD14
4.3 Limitations of EMRALD for HRA ...17
4.4 Limitations of Standalone HUNTER for PRA ..17
4.5 Advantages and Disadvantages of Integration ..17

5. EMRALD-HUNTER IMPLEMENTATION ..19
5.1 Embedding HUNTER into EMRALD ..19
5.2 Conceptual HUNTER Module Integration ...22
5.3 HRAEval Event Object ...26

5.3.1 HRAEval Event Variable Exchange Functionality ..26
5.3.2 HRAEval Event HRA Engine Logic ...28

6. DYNAMIC PERFORMANCE SHAPING FACTORS IN EMRALD-HUNTER30
6.1 Introduction ...30
6.2 Dynamic PSF for Available Time and Time Pressure ..32
6.3 Dynamic PSF for Fitness for Duty ..34

6.3.1 Introduction ..34
6.3.2 Fatigue ..34
6.3.3 Fitness for Duty ..37

 vi

6.4 Dynamic PSF for Stress ..40
6.4.1 Introduction ..40
6.4.2 Context Parameters ..43

6.5 Dynamic PSF for Experience and Training ..44
6.5.1 Existing Treatment of Experience and Training as a PSF ...44
6.5.2 Experience and Training PSF Based on Objective Parameters45
6.5.3 Experience and Training Effects Evaluated from a Simplified Simulator

Study ..47
6.5.4 Proposed General Form of Experience and Training PSF ...49

7. SAMPLE ANALYSES ..52
7.1 Introduction ...52
7.2 Steam Generator Tube Rupture (SGTR) ...52

7.2.1 SGTR Description ..52
7.2.2 SGTR PRA Modeling ..53
7.2.3 EMRALD-HUNTER SGTR ..55

7.3 Loss of Feedwater (LOFW) Scenario ...60
7.3.1 LOFW Description ...60
7.3.2 LOFW PRA Modeling ...63
7.3.3 EMRALD-HUNTER LOFW Model ...65

8. DISCUSSION ..66

9. REFERENCES ..69

 vii

FIGURES
Figure 1. HUNTER conceptual components .. 3
Figure 2. Tight coupling and interactive feedback loop of operator and plant in HUNTER 5
Figure 3. New facets of risk possible with computational risk assessment (courtesy of Curtis

Smith) ... 5
Figure 4. Cognitive model of GOMS-HRA task level primitives .. 7
Figure 5. Evolution of HUNTER .. 8
Figure 6. An example of the EMRALD model diagram ... 10
Figure 7. The PRIME-HRA framework ... 12
Figure 8. External code execution in EMRALD ... 19
Figure 9. MAAP custom form for running an application in EMRALD .. 20
Figure 10. HRA event code in EMRALD to call HUNTER .. 20
Figure 11. A section of an EMRALD model in the JSON format specifying the HUNTER HRA

event .. 22
Figure 13. Steam generator tube rupture EMRALD model .. 23
Figure 14. Loss of feedwater EMRALD model with HUNTER module elements overlaid 24
Figure 15. Conceptual representation of the EMRALD HRAEval event that provides the

interfacing functionality between an EMRALD model and the HUNTER module 26
Figure 16. Pseudocode for the procedure execution representing the central functionality of the

HUNTER HRA engine used to calculate human success or failure and the elapsed time
for each task .. 28

Figure 17. EMRALD-HUNTER interface for predefined procedures ... 29
Figure 18. Types of PSF assignments possible in HUNTER ... 30
Figure 19. Time dependent 3rd order polynomial fatigue index based on Folkard (1997) 34
Figure 20. Fatigue risk rates with standard error from Folkard (1997) .. 35
Figure 21. Simulated fatigue index values from revised factorial fatigue index model in blue and

observed values from Folkard (1997) in red ... 36
Figure 22. Ensemble plot of dynamic fatigue curves generated from stochastically setting revised

fatigue model parameters .. 36
Figure 23. Function that calculates adjusted time in HUNTER as a function of fatigue 37
Figure 24. The impact of sleep deprivation on cognitive performance out to 72 hours (from

Belenky, 1994) .. 38
Figure 26. C# code to capture the relationship between speed, accuracy, and a fitness for duty

PSF multiplier ... 39
Figure 27. Ensemble plots for the dynamic Fitness for Duty multiplier over 72 hours 39
Figure 28. A mathematical model of the stress PSF when the time to perform a task is less than 60

minutes (from Boring et al. 2022) .. 40

 viii

Figure 29. A mathematical model of the stress PSF when the time to perform a task is greater
than 60 minutes (Boring et al. 2022) .. 41

Figure 30. Idealized lag, adapt, and linger curves from when the task is completed before the peak
level has been reached (orange), before the lag period (gray), and before available time
expires (blue) .. 42

Figure 31. Idealized combined effect lag-adapt-linger curves from when the task is completed
before the peak level has been reached, before the lag period, and before available time
expires ... 42

Figure 32. Ensemble of ten lag-adapt-linger models with stressor introduced at 1 minute and
removed at 3 hours .. 43

Figure 33. Human information processing model (from Campbell et al., 2002) .. 45
Figure 34. Recall probability depending on retention interval for short term memory (left) and

recall ability depending on the number of recalls (right) (from Campbell et al., 2002) 45
Figure 35. Predicted memory performance depending on time elapsed ... 46
Figure 36. Number of errors across trials ... 47
Figure 37. Distribution of average time to complete a task (left) and error rate (right) depending

on trials ... 48
Figure 38. Means of average time to complete a task (left) and error rate (right) depending on

experimental rounds and trials .. 48
Figure 39. Experience and Training PSF multiplier decreasing depending on the number of

trainings (L1 = 0.01, L2 = 0.001) ... 50
Figure 40. Experience and Training PSF multiplier increasing depending on the time elapsed

since trainings (L1 = 0.01, L2 = 0.001) .. 50
Figure 41. Experience and Training PSF multiplier for 10 days of training in a 40-day cycle (L1 =

0.01, L2 = 0.001) ... 51
Figure 42. Experience and Training PSF multiplier for 5 days of training in a 3-months cycle (L1

= 0.01, L2 = 0.001) .. 51
Figure 43. Generic SGTR event tree (from Ma et al., 2019) .. 53
Figure 44. The EMRALD-HUNTER SGTR model ... 56
Figure 45. Procedure contents coded for diagnosing SGTR within EMRALD-HUNTER 57
Figure 46. The procedure contents coded for mitigating SGTR within EMRALD-HUNTER 58
Figure 47. An example simulation result of the EMRALD-HUNTER SGTR model 59
Figure 48. The elapsed time on stress level and time pressure in the SGTR scenarios 60
Figure 49. Generic LOFW event tree (from Ma et al., 2019) ... 62
Figure 50. The EMRALD-HUNTER LOFW model .. 64
Figure 51. The procedure contents coded for diagnosing LOFW within EMRALD-HUNTER 64
Figure 52. The elapsed time on stress level and time pressure in LOFW scenarios 65
Figure 53. Empirical data for HEPs for SGTR overlaid with predicted HEPs from EMRALD-

HUNTER .. 66

 ix

Figure 54. Empirical data for HEPs for SGTR overlaid with predicted HEPs from EMRALD-
HUNTER .. 67

Figure 55. Guidance on when to use EMRALD-HUNTER vs. the standalone version of
HUNTER .. 68

 x

TABLES
Table 1. GOMS-HRA task level primitives .. 6
Table 2. GOMS-HRA task level primitives .. 7
Table 3. Characteristics of two different EMRALD modeling approaches to dynamic HRA 11
Table 4. List of requirements for dynamic HRA crosswalked to HUNTER and EMRALD 15
Table 5. Variables exchanged by EMRALD and HUNTER .. 27
Table 6. Treatment of PSFs in EMRALD-HUNTER ... 31
Table 7. Relationships between GOMS-HRA operations and PSFs in EMRALD-HUNTER 32
Table 8. Available time PSF levels and multipliers in SPAR-H .. 33
Table 9. PSFs with time multipliers in HUNTER .. 33
Table 10. Event tree headings for SGTR (from Ma et al., 2019) .. 54
Table 11. Generic human failure events in SGTR .. 55
Table 12. Simulation outputs of the EMRALD-HUNTER SGTR model for stress and time

pressure ... 60
Table 13. Event tree headings for LOFW (from Ma et al., 2019) .. 62
Table 14. Generic human failure events in LOFW ... 63
Table 15. The simulation outputs of the EMRALD-HUNTER LOFW model depending on stress

and time pressure .. 65

 xi

ACRONYMS

AFW auxiliary feedwater
ASEP Accident Sequence Evaluation Program
ATWS anticipated transient without scram
BDBE beyond design basis event
CNS Compact Nuclear Simulator
CPR cardiopulmonary resuscitation
CoBHRA computation-based human reliability analysis
CRA computational risk assessment
CREAM Cognitive Reliability and Error Analysis Method
CSI control of safety injection
DBA design basis accident
DOE Department of Energy
ECA emergency contingency action
EMRALD Event Modeling Risk Assessment using Linked Diagrams
FAB feed and bleed
FLEX flexible coping strategy
FRP functional recovery procedure
GOMS Goals-Operator-Method-Selection rules
HEP human error probability
HFE human failure event
HPI high-pressure injection
HPR high-pressure recirculation
HRA human reliability analysis
HUNTER Human Unimodel for Nuclear Technology the Enhance Reliability
HuREX Human Reliability Data Extraction
IE initiating event
INL Idaho National Laboratory
JSON JavaScript Object Notation
LOCA loss of coolant accident
LOFW loss of feedwater
LOOP loss of offsite power
LOSC loss of seal cooling
LWRS Light Water Reactor Sustainability
MAAP Modular Accident Analysis Program
MSIV main steam isolation valve
NPP nuclear power plant
PORV pilot operated relief valve PORV
PRA probabilistic risk assessment
PRIME Procedure-based Risk Investigation Method
PRIMERA Procedure-based Investigation Method of EMRALD Risk Assessment
PSF performance shaping factor
PWR pressurized water reactor
Rancor Rancor Microworld Simulator
RCP reactor coolant pump
RCS reactor coolant system
RELAP Reactor Excursion and Leak Analysis Program
RHR residual heat removal

 xii

RISA Risk-Informed Systems Analysis
RTS reactor trip system
RWST refueling water storage tank
SBO station blackout
SGI steam generator isolation
SGTR steam generator tube rupture
SIAS safety injections automation system
SPAR-H Standard Plant Analysis Risk-Human
SSC secondary side cooling
SSCR secondary side cooling recovery
TDP turbine-driven pump
THERP Technique for Human Error Rate Prediction
TLP task level primitive
TMI Three Mile Island
U.S. United States

 1

EMRALD-HUNTER: AN EMBEDDED DYNAMIC HUMAN
RELIABILITY ANALYSIS MODULE FOR
PROBABILISTIC RISK ASSESSMENT

1. INTRODUCTION
Under the United States (U.S.) Department of Energy’s (DOE) Light Water Reactor Sustainability

(LWRS) Program, the Risk-Informed Systems Analysis (RISA) pathway has funded ongoing research
and development activities in support of dynamic risk assessment methods. Legacy risk assessment
methods are widely used in the nuclear industry and help ensure the overall safety and reliability of the
U.S. commercial operating fleet of nuclear power plants (NPPs). However, these methods are largely
static approaches to risk, meaning they operate on a fixed set of plant and operational conditions.
Dynamic risk assessment uses Monte Carlo techniques to explore a wider range of outcomes, enabling
what-if modeling. The approach is fundamentally different from static risk, since dynamic risk models
component relationships and possible values. Randomized samples of model values through the Monte
Carlo technique reveal emergent outcomes that could otherwise be challenging to foresee. Such modeling
is especially important in the context of plant upgrades, novel plant operation strategies (e.g., use of new
mitigating strategies to cope with beyond design bases events [BDBEs]), and advanced reactors, where
there is not yet a large base of operating experience to understand system interdependencies or new
operational contexts. The shift from risk for as-built systems to new systems provides the perfect basis for
ensuring that risk assessment tools can be used to ensure the safety of these new systems. The purpose of
developing dynamic risk assessment tools is to ensure the completeness and accuracy of modeling for
new systems while also achieving efficiencies for the analysts.

Two recent tools have been developed under RISA to support emerging needs for dynamic risk
assessment:

• Event Modeling Risk Assessment using Linked Diagrams (EMRALD; Prescott, Smith, and
Vang) is a dynamic probabilistic risk assessment (PRA) software tool to help model causes
and mitigations for hardware failures.

• Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER; Boring et al.,
2022) is a dynamic human reliability analysis (HRA) software tool to help model operator
performance including human errors.

Both of these tools were recently programmatically reviewed in LWRS for their deployment
readiness, and both tools were recommended for further development to better support industry risk
assessment needs (Choi, 2020). Since the time of the review, both EMRALD and HUNTER have
undertaken significant activities to make them more useful for industry applications. For example,
ERMALD has recently been coupled to the widely used static PRA event and fault tree modeling
software called Systems Analysis Programs of Hands-on Integrated Reliability Evaluations (SAPHIRE),
which allows EMRALD to more readily interface with existing plant PRA models (Prescott, Wood, and
Ziccarelli, 2022). HUNTER has evolved from a collection of disparate dynamic HRA models into a
standalone, integrated software tool (Boring et al., 2022) that also includes an embedded plant simulation
to facilitate accurate human-technology interactions (Lew et al., 2022).

The purpose of the research effort captured in this report is to integrate these dynamic PRA and HRA
tools to enable both human and plant risk modeling in a single tool. Such a tool would benefit analysts by
providing a one-stop tool to cover hardware and operational risk. This report presents the integration of
HUNTER within EMRALD to create EMRALD-HUNTER. The decision to embed HUNTER was based
on the existing wider user base for PRA who would benefit from the addition of greater HRA
functionality into PRA modeling tools like EMRALD. HUNTER will continue to exist as a standalone

 2

tool for more detailed HRA and human performance efforts, but a streamlined version of HUNTER for
general HRA applications has been embedded in the EMRALD code. This streamlined version of
HUNTER aims to provide a limited subset of functionality that is within a reasonable expectation of
knowledge and expertise for existing probabilistic risk analysts. The intent is the analyst is not required to
contend with the bulk of nuances of dynamic HRA models and instead can select from a suite of prebuilt
procedures to represent human failure events in their model. This suite of models was created and can be
refined by human reliability analysts as needed using the standalone HUNTER software.

This report overviews the development considerations and provides proof-of-concept demonstrations
of EMRALD-HUNTER for two scenarios. The report is structured as follows:

• Chapter 1 (this chapter)—introduces the integration of EMRALD and HUNTER

• Chapter 2—provides background on the standalone version of HUNTER

• Chapter 3—explains the existing EMRALD implementation

• Chapter 4—provides a detailed rationale for integrating EMRALD and HUNTER

• Chapter 5—describes the software architecture and implementation details for EMRALD-
HUNTER

• Chapter 6—overviews the treatment of dynamic performance shaping factors in EMRALD-
HUNTER

• Chapter 7—provides sample analyses for steam generator tube rupture and loss of feedwater
events

• Chapter 8—concludes the report with a comparison of the sample analyses to available
empirical data and provides brief selection guidance for when to use EMRALD-HUNTER vs.
standalone HUNTER.

 3

2. INTRODUCTION TO HUNTER
2.1 What is HUNTER?

HUNTER (Boring et al., 2016 and 2022) has evolved through several iterations into a capable
solution for dynamic HRA. HUNTER was born from efforts to adapt a simplified static HRA method like
Standard Plant Analysis Risk-Human (SPAR-H; Gertman et al., 2005) into a dynamic HRA framework,
essentially as a proof of concept that could be scaled up to more complex HRA methods (Boring et al.,
2017). Additionally, HUNTER was scoped to model dynamic risk scenarios such as flexible coping
strategy (FLEX) scenarios involving BDBEs and other risk contexts that may be less control room-centric
than typical previous efforts (Joe et al., 2015). An additional benefit to the dynamic nature of HUNTER is
that it enables human error to be treated as dynamic risk rather than as a static function, the latter being
more common in most HRA approaches. Human performance is variable and depends on many factors
that can shift and change in seconds based on the evolving surrounding context of the human activities.
HUNTER’s dynamic approach thus allows for a more realistic assessment of human error risks and a
wider array of contexts and scenarios to model, including consideration of what-if modeling that is
difficult to perform with traditional static HRA methods.

Figure 1. HUNTER conceptual components

HUNTER includes three primary conceptual components—the Individual, Task, and Environment—
as depicted in Figure 1.

• The Individual Component models those aspects that affect human performance such as
performance shaping factors (PSFs)

• The Task Component models what the human is doing and is primarily defined by operating
procedures

• The Environment Component models the technological system the human is using such as a
simulation of an NPP that provides the environment context for the other two conceptual
components.

Each of these constructs capture various parts of the HUNTER architecture and include subcomponents in
the software necessary to drive the scenario. For example, an overall Scheduler Model tracks the Monte

 4

Carlo simulation runs and initiates each task while tracking the global time for the simulation as the task
is executed. The Task Module handles the interchange between the Individual and the Environment as it
advances along a timeline. Each of these constructs will be captured in more detail in later sections,
however, it is important to note that this type of foundation allows HUNTER to capture models across
three common areas of variability in risk modeling. The Individual allows for modeling different
cognitive models, states, PSFs, or internal factors to human agents. The Task allows for the modeling of
many different types of tasks from control room procedures to field operations. Lastly, the Environment
allows for the integration of many different models of the “environment.” Within HUNTER, the
environment can be truly the actual physical environment, it can be a plant model (more commonly used)
which represents a simulation of a nuclear power plant, or a BDBE model. All of these mean that
HUNTER can support immense variation in modeling needs and provide a dynamic modeling structure
for human error in these spaces.

2.2 Background
This section captures a brief overview of key background concepts of the HUNTER method,

specifically the separation between static and dynamic HRA methods, an overview of the Goals-Operator-
Method-Selection rules (GOMS)-HRA process used in HUNTER, and the past evolutions of the
HUNTER method.

2.2.1 Static versus Dynamic HRA
HRA methods have often been described as either static or dynamic methods, with the former being

far more common. Static HRA is associated with paper-based worksheet methods where analysts
manually complete worksheets (or software equivalents) to arrive at the human error probability (HEP).
While the paper nature of these analyses is indicative of the static characterization, this characterization
goes further. Static HRA methods are also captured by a fixed calculation of an HEP for any given human
failure event (HFE) scenario. What this means is that the assessment of an HEP for any HFE is fixed and
is not modified by shifting situations or timing in the overall risk assessment, unless another worksheet is
completed for a deviation scenario. This nominal course of human actions is a challenge in terms of
ecological validity, because human performance is variable and does respond to changing timing or
conditions. Therefore, static HRA methods are more limited in terms of realistically capturing human
error. Of course, static HRA methods will capture context (e.g., by using different multipliers associated
with the effects of PSFs), but these methods do not readily account for changing contexts within HFEs.

Dynamic HRA is commonly characterized as including modeling methods to capture different time
scales and varying conditions to capture a distribution of HEPs rather than a fixed HEP. Dynamic HRA
can use Monte Carlo modeling methods, cognitive modeling, or other simulation platforms to capture the
overall progression of any scenario and a constantly shifting environment to more realistically model
human performance. Dynamic HRA methods can also provide additional metrics of human error beyond
the HEP. Metrics such as task time duration, step duration, or even sub-step level parameters can help
increase the depth of our understanding of human performance in these contexts. This allows for more
analysis of interaction of these factors to task performance. By grounding modeling on the temporal
aspects of performance we can better understand how PSFs and overall time executions can affect or
predict performance. For example, if plant states mean that the operator cannot physically complete the
necessary tasks before some safety system triggers, then the subsequent failure is not a human error. If the
agent cannot possibly succeed then the failure was not due to human error. However, as human agents
will have an unclear perception of time available before system faults, the stress response of feeling
hurried may lead to human errors in the attempt. These errors can be better captured with the temporal
foundation in the HUNTER method. This dynamic nature adds complexity but brings HRA closer to
reality, which could be extremely valuable to capture error-likely situations and identify likely recoveries
and mitigations.

 5

2.2.2 Dynamic versus Computational HRA
HUNTER has shown the utility of dynamic HRA in terms of considering the temporal dimension of

human activities. While conventional HRA produces an HEP, HUNTER is able to generate additional
quantitative outputs such as task time duration. HUNTER works by coupling a virtual operator model
(i.e., a digital human twin) with a virtual plant model (i.e., a simulator or digital twin). The tight coupling
of the operator and plant models allows exploration of the nuances of how events unfold through the
feedback loop of an operator action and a plant response, leading to further operator responses leading to
changes in the plant states, and so on (see Figure 2).

Figure 2. Tight coupling and interactive feedback loop of operator and plant in HUNTER

In accounting for the interplay between the human and the plant, an accurate estimate of time can be
produced. The importance of time has been understood from early time reliability methods of HRA, since
one of the ultimate measures of successful or failed events is whether or not required actions can be
completed within a specific time window. This time window is a reflection of changing plant states (e.g.,
core heating resulting from insufficient cooling), which may lead to an escalation of the event, including
core damage in rare cases. Plant parameters like core temperature evolve in a fashion to where there is a
threshold of damage. The time window reflects when that threshold is crossed and provides an upper limit
on how long the human has to complete certain actions. Dynamic HRA methods like HUNTER provide a
simulation capable of estimating the duration of tasks and determining when safety time thresholds are
crossed. Human error, in such cases, is not just the probability that the operator fails to complete a task; it
is also the time it takes to complete tasks vs. the time available.

Figure 3. New facets of risk possible with computational risk assessment (courtesy of Curtis Smith)

HUNTER has been framed as a computation-based HRA (CoBHRA) approach (Rasmussen and
Boring, 2016), which is the human-centered aspect of computational risk assessment (CRA; Sezen et al.,
2019). CRA and CoBHRA make heavy use of computational tools like simulation and simulators to
model plant or human performance. These tools may make use of multiple model codes in parallel, e.g.,

 6

HUNTER makes use of both a virtual operator and a simulator to represent the NPP. With multiple codes,
there is also the opportunity to consider different aspects of risk than has been the case in historical
applications of PRA and HRA. Some of the roadmap topic for CRA to tackle include temporal, spatial,
mechanistic, and topological, related to timing, location, physics, and complexity issues, respectively (see
Figure 3). Within CoBHRA, mechanistic issues might be considered psychological rather than physical
phenomena.

The potential for CoBHRA can be framed by considering the interrogative wh-words in English,
including who, what, when, why, and how (Koutsoudas, 1968). Conventional static HRA can be
considered to answer who and what as qualitative elements and how often as the quantitative element. As
discussed in the previous section, dynamic HRA addresses temporal concerns—when and how long—that
were not previously adequately considered in static HRA. Additional CRA elements are being introduced
in future versions of HUNTER.

Table 1. GOMS-HRA task level primitives

Primitive Description
AC Performing required physical

actions on the control boards
AF Performing required physical

actions in the field
CC Looking for required

information on the control
boards

CF Looking for required
information in the field

RC Obtaining required information
on the control boards

RF Obtaining required information
in the field

IP Producing verbal or written
instructions

IR Receiving verbal or written
instructions

SS Selecting or setting a value on
the control boards

SF Selecting or setting a value in
the field

DP Making a decision based on
procedures

DW Making a decision without
available procedures

W Waiting

 7

2.2.3 GOMS-HRA
HUNTER decomposes procedure tasks into task level primitives (TLPs) according to the GOMS-

HRA method (Boring and Rasmussen, 2016; see Table 1). Where applicable, the TLPs feature separate
primitives for control room and field operations. For example, the Check (C) TLP can be divided into
checking functions within the control room (CC) or in the field (CF). These TLPs follow a typical
information processing framework adopted in cognitive psychology (Boring et al., 2018) as depicted in
Figure 4, representing the most basic human activities delineated as sensation or perception, cognition or
decision making, and behavior activities. Each of the TLPs also has associated task level errors, which
identify the most likely types of errors to occur for each activity. The TLPs are mapped to nominal HEPs
derived from static HRA methods. Additionally, the TLPs for control room activities feature timing data
derived from simulator studies (Ulrich et al., 2017; see Table 2). Using nominal HEPs and timing data for
the TLPs allows HUNTER to produce both HEP and duration outputs.

Figure 4. Cognitive model of GOMS-HRA task level primitives

Table 2. GOMS-HRA task level primitives

Task Level
Primitive

5th
%tile

Time
(seconds)

95th
%tile

AC 1.32 18.75 65.26
CC 2.44 11.41 29.88
DP 2.62 51 152.78
IP 3.35 15.56 40.66
IR 1.47 10.59 31.84
RC 3.08 9.81 21.90
SC 3.01 34.48 115.57
W 1.79 14.28 113.61

 8

HUNTER 1

Initial framework and demonstration of HUNTER concepts

(Boring et al., 2016)

HUNTER 2

Initial standalone software demonstration of HUNTER

(Boring et al., 2022)

HUNTER 2.1

Data collection of human operators

New scenarios and simulator coupling

(Park et al., 2022b)

(Lew et al., 2022)

Figure 5. Evolution of HUNTER

 9

An important feature of the HUNTER method is the focus on timing data and the overall time
duration of task performance. Due to the extremely dynamic nature of human performance, this focus is
critical to ensuring a robust understanding of human error in complex systems. The PSFs impact human
performance differently as time during a task progresses; so, including this timing structure can help
understand more precisely when human error is more likely. The HUNTER method uses GOMS-HRA to
hold and manage these task timings and durations. GOMS-HRA allows for each task to be broken down
into subtask primitives which can then be summed at various levels to provide timing data for steps of a
procedure or entire task performance. While this allows for capturing instances when a task’s failure is
linked to running out of time, rather than making an error, it also provides a critical contextual data point
which can be used to dig into human performance data and better capture when error rates rise and fall
and when various PSFs trigger human errors.

2.3 Previous Instances of HUNTER
Previous iterations of HUNTER were initially focused on scaffolding out a framework for dynamic

HRA or integrating diverse tools into a common software platform (see Figure 5). A modular philosophy
of integrating different modeling tools to create a functional dynamic HRA approach was key to the early
instantiations of HUNTER and persists to the current instantiation. For example, while HUNTER is
aligned to the SPAR-H HRA method, the architecture deliberately allows for use of different HRA
methods that may prove better fits to particular analysis needs. Similarly, HUNTER exists in versions
with different plant models used for the Environment module:

• A dummy-coded version that allows running without a plant model (HUNTER 2; Boring et
al., 2022)

• A version linked to the Reactor Excursion and Leak Analysis Program (RELAP5-3D)
thermal hydraulics code (HUNTER 2; Boring et al., 2022)

• A version linked to a simplified simulator for easier model development (HUNTER 2.1; Lew
et al., 2022)

Fundamentally, the core architecture of HUNTER follows the conceptual framework established with
HUNTER 2 (Boring et al., 2022), namely the three conceptual modules: the Individual, Task, and
Environment. The Individual module serves to contain the various parts of the user which need to be
modeled. This can include a cognitive model, PSFs, and other features of the specific human operator that
is being modeled. Similarly, the Task module contains the aspects of the task that the human operator is
to perform. This can contain the specific scenario that is being modeled, e.g., steam generator tube
rupture, the specific procedures that need to be called, the steps of said procedures, and the GOMS-HRA
primitives for the task. An important part of navigating tasks is determining deviations between work as
intended and work as done (Ashour, Ashcroft, and Phipps, 2021), meaning HUNTER should model when
humans correctly follow procedures and when they fail to follow procedures. The Environment module
serves to contain the relevant plant model or system in which the operator is performing, external PSFs,
any specific time limits, and other information relevant to the system context.

These modules serve as the high-level perspective of HUNTER. Specific software implementations
and versions of HUNTER may shift the implementational details of HUNTER to suit particular analysis
needs. Implementation modules go beyond the conceptual to the practical and logistics of the software
itself. This report highlights a new implementation of HUNTER as an embedded tool to support PRAs
using EMRALD. This implementation streamlines some features of HUNTER to allow incorporation
within EMRALD’s architecture and to facilitate ease of HRA model development for EMRALD users. It
must be noted that EMRALD-HUNTER represents a subset of HUNTER features, and it is intended that
further development will continue on the standalone version of HUNTER.

 10

3. INTRODUCTION TO EMRALD
3.1 What is EMRALD?

EMRALD (Prescott, Smith, and Vang, 2018; Prescott, Nevius, Ma, and Lawrence, 2022) is a
dynamic PRA tool developed by INL. EMRALD is a tool developed to model and analyze the sequence
and timing of events that lead to specific outcomes in the context of dynamic PRA. It provides a
simplified modeling process similar to existing static PRA modeling approaches but with a web-based
graphical user interface that makes it easy for users to model and visualize complex interactions in
dynamic PRA scenarios. Figure 6 shows an example of a model diagram in EMRALD with its easy-to-
use flow diagram user interface. In addition to lowering the entry threshold for carrying out dynamic
PRA, this tool allows users to couple the EMRALD models with other external codes.

Figure 6. An example of the EMRALD model diagram

3.2 HRA Using EMRALD
EMRALD was developed primarily to support coupling PRA with physics-based tools to support

time-based hazard scenarios such as flooding, but the EMRALD tool also includes useful functions
suitable for implementing and exploring dynamic HRA. First, EMRALD supports dynamic modeling of
human actions as they would actually be performed at NPPs in response to the changing conext of the
plant. It simultaneously models the specific moment at which the action is performed, the time it takes to
perform the action, and the failure probability of that action. Second, EMRALD allows evaluating
timeline uncertainties of human actions based on Monte Carlo random sampling. Whether human actions
can be completed within time constraints can be simulated and counted as overtime failure within
EMRALD (Park et al., 2021; Park, Boring, and Ulrich, 2022).

 11

There have been previous efforts to implement HRA models within the EMRALD tool. At the early
stage of HRA research using EMRALD, two different approaches were suggested as summarized in
Table 3. Procedure-based EMRALD modeling relies on procedural steps that describe the actions
operators or plant personnel must perform in a given situation, while PRA/HRA-based EMRALD
modeling makes the most of concepts and techniques that have been used in existing PRA and HRA.
However, these two approaches feature a couple of limitations.

• Procedure-based EMRALD modeling does not communicate with PRA elements such as
information on equipment status (i.e., operational or failed). In actual situations, the required
operator actions may vary, depending on whether certain pieces of equipment remain
operational. If the approach fails to consider components in PRA fault trees, it may be highly
limited for evaluating various scenarios that lead to failure.

• For PRA/HRA-based EMRALD modeling, understanding how to assume time required for
each basic event (i.e., HFE) and how to specifically model certain major HRA concepts (e.g.,
recovery opportunities) can be challenging and require more complex modeling or bloating of
the model.

• Furthermore, the methods were tested using only a small subset of procedures. A method of
modeling a larger collection of procedural steps that could be used in a scenario is not
explicitly suggested.

• In addition, these modeling approaches do not fully consider PSFs, which influence human
performance and are used to highlight error contributors and adjust basic HEPs. Adding PSF
influences would require expert knowledge by the modeler and over complicate the model
beyond what may be reasonable to expect of a probabilistic risk analyst without specific
expertise in the nuances of human performance.

Table 3. Characteristics of two different EMRALD modeling approaches to dynamic HRA

 Procedure-based EMRALD
Modeling (Ulrich et al., 2020)

PRA/HRA-based EMRALD
Modeling (Park et al., 2021)

Description
Specifically models procedural
contexts

Models basic events and HFEs already
considered in PRA and HRA

Characteristics
Useful in accounting for context
uncertainties that complicate HEP
determinations

Within PRA/HRA modeling, it could be
used to validate timeline uncertainties
not covered in existing PRA/HRA

To handle the challenges posed by each approach and suggest a more structured and systemic method
of analyzing human actions in the dynamic context, Procedure-based Risk Investigation Method – HRA
(PRIME-HRA) and the Procedure-based Investigation Method of EMRALD Risk Assessment – HRA
(PRIMERA-HRA) have been suggested (Park et al., 2021). The PRIME-HRA method provides guidance
on implementing dynamic HRA, while the PRIMERA-HRA is the application of PRIME-HRA
specifically within the EMRALD software. PRIME-HRA has contributed to the technical basis of the
HUNTER tool, while PRIMERA-HRA has been used for understanding needs and requirements in
dynamic HRA. Figure 7 summarizes the PRIME-HRA framework, which consists of four areas: (1)
procedure-based task analysis, (2) task unit analysis for procedures applied to a given scenario, (3)

 12

development of simulation models using dynamic risk assessment tools such as EMRALD and HUNTER,
and (4) model analysis and integration into the PRA model.

Figure 7. The PRIME-HRA framework

Regarding the first step, task analysis is the process of collecting and analyzing task-related
information necessary for performing HRA. In this step, we collect the input data required for modeling
procedures and implementing dynamic HRA. These data include static PRA models, information (e.g.,
PSF data) related to HFEs, and relevant procedures. We then develop an event sequence diagram and
identify its actual timeline.

In the second step, the procedure paths in the event sequence diagram are decomposed to the task unit
level. Basically, a procedure path consists of a couple of procedures that, in turn, include many procedural
steps, each of which is comprised of a couple of task units. The task unit represents the procedure task
type, as defined in the Human Reliability Data Extraction (HuREX; Jung et al., 2020) framework and

 13

GOMS-HRA (Boring and Rasmussen, 2016). Time and HEP information are assigned for each task unit.
In GOMS-HRA, the time information is assumed to follow a statistical time distribution whose mean
value, standard deviation, and 5th and 95th percentile values are dependent on the particular task unit
involved (Ulrich et al., 2017). The time data were collected through experiments involving actual
operators at INL’s Human Systems Simulation Laboratory (Boring, 2020), which was designed to
conduct critical safety-focused human factors research. Depending on the general approach suggested in
existing HRAs, HEPs are calculated based on the relationship between a basic HEP and the PSF
multiplier values. In the present report, basic HEPs for task units were derived from the HuREX database.
PSFs suggested by the SPAR-H method (Gertman et al., 2005) method were employed.

In the third step, simulation models are developed using dynamic risk assessment tools such as
EMRALD and HUNTER. PRIMERA-HRA suggests detailed guidelines on how to develop simulation
models using EMRALD. The simulation models developed based on these tools include all the
information obtained from the previous steps, and are used for evaluating HEPs and time information for
HFEs. Only task units relevant to critical human actions are used in the HEP evaluations, whereas the
time information is evaluated for every task unit modeled in a given scenario.

In the final step, HFE failure paths, HEPs, and overtime failures for HFEs are evaluated. Those HFE
failure paths that are based on cutsets generated from simulation logs explain why a given scenario is
considered failed. These can be used to correct modeling errors in dynamic HRA tools. The HEPs
generated are provided to the HFEs considered in static PRA models, or to account for human errors in
dynamic PRA models. Evaluation of overtime failures for HFEs addresses whether the HFEs are
completed within their allotted time windows. If not, this is considered a guaranteed failure (i.e., HEP =
1.0).

 14

4. CONSIDERATIONS FOR INTEGRATING EMRALD AND HUNTER
4.1 Need for Integration

To properly evaluate human actions within a dynamic HRA model, it is important to provide
sufficient contextual information describing the specific system or environment state at the moment that
human actions are performed to understand the nature of human failures that may occur. In traditional
static HRAs, information required for HRA processes is collected from procedures, structured interviews
with knowledgeable experts, PRAs, and thermal hydraulics models. Procedures include detailed guidance
on what operators or personnel need to do in most of situations that can happen in NPPs. Structured
interviews are carried out to ask questions on things difficult for HRA analysts to understand or to collect
plant-specific information such as time required to perform a human action. From the PRA side, event
trees and fault trees provide specific scenarios where human actions are required, success criteria on
human actions, or availability of systems in given scenarios. Lastly, thermal hydraulics analysis provides
time windows of human actions (i.e., time constraints that operators need to finish their actions before
plant states become irreversible) or plant parameters used by human reliability analysts to understand
operational aspects in scenarios.

The mutual cooperation and communication between the HRA data providers above are necessary to
successfully perform dynamic HRA. However, EMRALD does not have all of these required functions to
support a more realistic representation of human error within dynamic HRA. While the current EMRALD
allows for generic modeling, the tool mainly focuses on plant behavior, general operator actions and
linking in external codes rather than HRA, because EMRALD was not originally developed for HRA. For
this reason, our research team has coupled HUNTER and EMRALD to make them mutually complement
one another in terms of dynamic HRA functions. This coupling adds simple methods for important HRA
functions in EMRALD without extensive HRA background on behalf of the analyst. Equally importantly,
it provides a streamlined approach to use HRA functions from the standalone version of HUNTER
without some of the complexities involved with detailed dynamic HRA modeling. This approach proves
more efficient than newly developing all dynamic HRA functions within EMRALD while ensuring PRA
analysts can reasonably consider HRA without the need to master new tools like HUNTER. This
combination enables small or simple HRA models to be combined under a simple EMRALD model,
capturing a more realistic and detailed dynamic PRA and HRA.

4.2 Dynamic HRA Functions Currently Available in HUNTER and
EMRALD

To couple EMRALD and HUNTER, it is necessary to understand what dynamic HRA functions can
be included in each tool. Accordingly, this report investigates what functionalities are required for
dynamic HRA and whether HUNTER and EMRALD can handle each function. Table 4 summarizes the
list of necessary functions in dynamic HRA. The current availability of the functions within HUNTER
and EMRALD is also summarized in the table. In the list, there are thirteen functions depending on the
three areas of consideration, i.e., HRA, PRA, and thermal hydraulics codes and simulators. These
functions are organically connected to reasonably generate outputs of dynamic HRA such as HEPs over
time.

The HRA section consists of three subsections, i.e., task analysis, qualitative analysis, and
quantitative analysis. Task analysis includes two functions, i.e., 1) analyzing and modeling human actions
within the tool and 2) inputting data required for simulation. These functions are available in both
HUNTER and EMRALD.

 15

• Regarding the first function, HUNTER has a module (i.e., the Task module) for loading
written procedures and automatically converting them into visual diagrams representing tasks
written in procedures via the HUNTER user interface. Users can manually add or delete the
diagrams or change the relationships through the interface. EMRALD also has its own user
interface, which enables manually defining human actions into diagrams and relationship
between the diagrams.

Table 4. List of requirements for dynamic HRA crosswalked to HUNTER and EMRALD

Section Subsection Requirement HUNTER EMRALD

HRA Task analysis Analyzing and modeling human
actions within the tool Yes Yes

Entering data required for simulation Yes Yes

Qualitative
analysis

Determination of a set of PSFs Yes No

Evaluation of PSF levels Yes No

Quantitative
analysis

Calculation of HEPs Yes No

Consideration of PSFs in dynamic
context Yes No

Time multiplier application Yes* No

Evaluation of overtime failure No Yes

PRA Event tree
analysis

Modeling event sequences
depending on success and failure of

systems
No Yes

Fault tree
analysis

Modeling failure of systems No Yes

Entering failure data No Yes

Thermal
hydraulics
codes and
simulators

Plant
parameters Coupling plant parameters with

functions in the tool Yes Yes*

*Partially implemented or under development

• For the second function, HUNTER assigns nominal HEPs and time required for human
actions depending on task types suggested in the GOMS-HRA method. In EMRALD, there is
a function for entering probabilities in a diagram to move between diagrams. Using this
function, users can use HEP values to model the progression probabilistically from one
diagram to other diagrams. Analysts can use HEP values to model the success and failure of
human actions. Also, EMRALD enables users to add a time distribution into each diagram.
Time values obtained from the time distribution via the Monte Carlo sampling can represent
time required for human actions.

 16

Second, the quantitative analysis includes two functions, i.e., 1) determination of a set of PSFs and 2)
evaluation of PSF levels.

• The HUNTER tool basically uses the eight PSFs suggested in the SPAR-H method, and users
can select PSF levels for the SPAR-H PSFs via the HUNTER interface. HUNTER also
includes provision for auto-calculating PSF levels.

• EMRALD does not provide any function to determine a set of PSFs and evaluate PSF levels
within the tool.

Third, the quantitative analysis contains four functions, i.e., 1) calculation of HEPs, 2) consideration of
PSFs in dynamic context, 3) time multiplier application, and 4) evaluation of overtime failure.

• The current HUNTER tool implements the first and second functions. Specifically, for the
HEP calculation, HUNTER basically estimates HEPs by multiplying nominal HEPs assigned
from the GOMS-HRA method and PSF multipliers on PSF levels evaluated in the qualitative
analysis. Regarding the PSF application, HUNTER provides an option on how to apply PSFs
in the calculation. Users can select the same approach to existing static HRA or mathematical
models implementing PSF multiplier changes over time in the HUNTER interface. In
addition, recent HUNTER research identifies the increase of time required for human actions
depending on PSF levels. The time multiplier concept is currently under development.

• In EMRALD, evaluation of overtime failure is the only function available. This function is
not currently implemented in the standalone version of HUNTER. Overtime failure refers to
the failure caused when human actions are not completed within time constraints. If time
required for human actions takes longer than their time constraints, it is assumed that human
actions are guaranteed to fail. EMRALD enables users to add logic for evaluating overtime
failure, then count it as a result of simulation.

The PRA section is composed of two subsections, i.e., event tree and fault tree analyses, which are
the major modeling approaches in existing static PRA. These also play an important role in dynamic HRA
and require three functions for implementing dynamic HRA.

• The first function related to event tree analysis is modeling event sequences depending on
success and failure of systems. This function plays a role in defining specific environments
and conditions at the moment human actions are carried out. In other words, it is used to
differentiate scenarios, which require different mitigation strategies and human actions.
Depending on scenarios, what human action needs to be analyzed in the dynamic context is
determined. For example, after an initiating event, if a mitigation strategy is successful, the
backup strategies would not need to be executed in the scenario. It means human actions for
the first mitigation strategy are all needed to be analyzed, while other human actions included
in the backup strategies do not need to be analyzed.

• The second function is modeling failure of systems. As a function stemming from fault tree
analysis, it specifically models various causes leading to failure of systems such as failure to
open a valve or run a pump. This includes entering failure data into the causes that have been
modeled.

EMRALD supports such event sequence and fault tree modeling, while HUNTER does not provide these
functions.

In the thermal hydraulics codes and simulator section, coupling plant parameters with the HRA and
PRA functions is a main function required in dynamic HRA. This function plays a role in providing cues
for human actions or determining entry conditions of mitigation strategies. Previous research regarding
dynamic HRA (Boring et al., 2016) attempted to estimate effect of the complexity PSF based on plant
parameters. As noted in Section 2.3, HUNTER includes several implementations of the Environment

 17

module and readily supports coupling to plant simulations. EMRALD also supports coupling to thermal
hydraulic simulations but does this on a model-by-model basis and does not automatically include such
simulations.

4.3 Limitations of EMRALD for HRA
As introduced above, EMRALD is specialized in dynamic PRA, coupling plant behavior, general

operator actions, and external simulation results, but only handles the functions related to HRA in a
limited fashion. Some challenges of using EMRALD for HRA include:

• Users have to manually generate diagrams representing human actions and enter HEPs and
time information in the diagrams. A procedure step includes multiple human actions, while a
scenario requires a lot of procedure steps. Accordingly, modeling human actions in a scenario
may need a lot of diagrams in EMRALD, causing additional model complexity.

• Unlike HUNTER, EMRALD does not have a function for automatically parsing procedures
to model human actions. If there are many diagrams generated in an editing window,
manipulating diagrams or loading the window in the interface slows down and makes HRA
modeling difficult and complex.

• PSF level evaluation or HEP calculation are not available in EMRALD. Therefore, these need
to be performed outside of EMRALD then added into EMRALD. Accordingly, within
EMRALD, it is difficult to trace how HEPs and PSFs entered in diagrams have been
evaluated.

These challenges should not be considered shortcomings of EMRALD, because EMRALD was not
originally designed for detailed HRA applications. The purpose of this report and accompanying research
is to redress such challenges and enable a more seamless handling of HRA within EMRALD.

4.4 Limitations of Standalone HUNTER for PRA
The current standalone version of HUNTER mainly concentrates on the functions in the HRA section

in Table 4 but does not provide the functions related to PRA. As mentioned in the previous section, the
PRA functions can be used for defining different scenarios and determining human actions needed to be
analyzed.

• HUNTER mainly works on procedures, and the PRA functions can help HUNTER to
navigate different scenarios like whether virtual operators keep performing the current
procedure or whether they perform a contingency action transferring to other procedures.

• If you have scenarios with multiple operator procedures that affect each other and depend on
plant conditions, you need a complex HUNTER model made by someone with expert
knowledge in HRA and PRA.

• HUNTER does not provide a ready way to visualize event paths such as through event trees
commonly used in PRA.

The current effort helps integrate HUNTER into broader PRA applications.

4.5 Advantages and Disadvantages of Integration
The biggest advantage of integrating HUNTER and EMRALD is to complement missing functions

required for dynamic HRA and PRA. HUNTER can use dynamic PRA functions via EMRALD, while
EMRALD acquires HRA support from HUNTER. This integration would be more efficient rather than
newly adding the duplicated functions within HUNTER and EMRALD, respectively. This integration
also allows a human reliability analyst to develop simple models for individual tasks, assuming required
inputs are provided. Libraries of tasks can even be modeled and given to a probabilistic risk analyst. This

 18

allows the analyst to do the overall modeling and just pull HRA pieces as needed, assigning the inputs.
This also enables simpler modeling and validation of HRA pieces before use.

On the other hand, there may be some disadvantages of the integration such as running time increases
due to the two-way communication between the codes or the inconvenience stemming from setting up a
general software environment where both codes are simultaneously available. However, these may not be
problems depending on how the codes are integrated. To minimize such disadvantages, the current effort
focuses on embedding HUNTER functions into EMRALD. A tradeoff of this embedding is that the full
suite of HUNTER functions are not transferred to EMRALD. However, these features are retained in the
standalone HUNTER. Embedding HUNTER into EMRALD is an effective way to handle routine
dynamic PRA applications needing HRA or specific EMRALD applications requiring greater HRA
fidelity. For novel applications such as unexampled events or human factors design tasks that require a
more in-depth understanding of human operational phenomena, standalone HUNTER remains the
preferred analysis tool. Standalone HUNTER is designed for detailed HRAs and human performance
modeling and retains those features where greater fidelity is required.

 19

5. EMRALD-HUNTER IMPLEMENTATION
5.1 Embedding HUNTER into EMRALD

To perform a HUNTER HRA evaluation in EMRALD, a new type of state object needed to be added
to EMRALD. An EMRALD model consists of diagrams made of different states. States have different
types of events and actions that can occur depending on Monte Carlo sampling or conditions, but a full
HRA event model is more than just an event or an action. This section explains the dynamic PRA
simulation process in EMRALD and how HUNTER was integrated into it.

EMRALD has a process to execute an external code as an action called an External Sim Action,
shown in Figure 8. This action allows the user to specify two scripts. The first script modifies or sets
parameters for the code to execute. The second script can read results and shift EMRALD states
depending on those results, driving the model. This is an advanced feature of EMRALD and requires
considerable skill from the user. If there is a commonly used code EMRALD provides a way to simplify
this process by adding a custom form in the user interface. For this, someone with web development skills
and knowledge about the software to be executed can make a form that allows the user to simply drag-
and-drop or select parameters to run the software. This was done for the Modular Accident Analysis
Program (MAAP) thermal hydraulics tool MAAP (Prescott et al., 2022) and is shown in Figure 9. This
option was first considered as a way to integrate HUNTER. However, a major benefit from HUNTER is
the calculated time to perform an action. So, running HUNTER externally is not optimal because of the
need to pass resultant values between HUNTER and EMRALD, a form of tight coupling described in
Boring et al. (2023).

Figure 8. External code execution in EMRALD

 20

Figure 9. MAAP custom form for running an application in EMRALD

A more fitting approach is a HUNTER specific event in EMRALD. When an EMRALD model is
being simulated, there are states that the simulation moves in and out of. As the simulation moves into a
specific state, it knows the events that the state cares about. If those events occur while the simulation is
in that state, then it executes the actions for that event. If that state is exited, then those events are no
longer relevant and are no longer monitored. There are two categories of events in EMRALD. The first
are condition-based events, where if that condition occurs then the event is immediately triggered, such as
the value of a variable being true or false. The second are time-based events, where a Monte Carlo sample
picks the time that event will occur, such as a distribution event.

Figure 10. HRA event code in EMRALD to call HUNTER

 21

The return value of HUNTER would be similar to a Monte Carlo sampling of a distribution. This led
to the creation of a new type of event in EMRALD. Each time-based event in EMRALD has a function
that samples the time for the event. The standalone HUNTER software is written in the Python
programming language, while EMRALD is written in the C# programming language. Therefore, the
starting point for embedding HUNTER into EMRALD was porting the relevant subset of HUNTER code
to C# so that it is compatible with the EMRALD codebase. For the HUNTER HRA event, EMRALD just
calls the embedded HUNTER C# functions and returns the time and is shown in Figure 10.

We have embedded the HRA Engine of HUNTER into EMRALD as a .NET 6.0 library in C#. The
EMRALD environment is entirely in .NET, and embedding HUNTER as a .NET library provides distinct
benefits:

• Seamless integration—By porting the Python code to C#, HUNTER can achieve seamless
integration with the existing EMRALD codebase, which allows for smoother communication
between the modules.

• Better performance—Native C# code may perform better than Python code, especially if
there are computationally intensive tasks or multiple interactions between the modules,
because Python is interpreted code, while C# compiles natively as a binary application.

• Improved debugging—Debugging and stack tracing are much easier with a unified codebase,
as HUNTER can use the same debugging tools and techniques as EMRALD.

• Reduced latency—Porting the code to C# eliminates the need for inter-process or network
communication between the modules, which can reduce latency.

Implementing the HRA Engine in C# also provides an opportunity to re-work and re-think
implementation strategies to reduce the overall complexity of the codebase while increasing some
capabilities and maintainability of the codebase.

Running the HUNTER model also requires the EMRALD model to either contain or have a reference
to the HUNTER model. It was decided to include the HUNTER model at the end of the EMRALD model,
which is in JavaScript Object Notation (JSON) format, to simplify maintainability of the model. The
HUNTER event also needs data to specify the procedure name, steps, and context links for adjusting the
PSFs. An example of the model data format and values are shown in Figure 11.

It was also determined that the HUNTER HRA process would need to be able to specify which action
would be taken when the event occurred. For example, the operator failing to perform the task is different
than just the task having an infinite completion time. This means that an HRA outcome type must be
linked to the desired action. Typically in EMRALD, an event triggers all the actions to occur that are
under it. Another modification to EMRALD was needed to limit the actions according to the event results.
To do this a new option was added to EMRALD simulation engine to allow an event to pick the actions
available for execution.

It is important to note that the scope of the integration does not include all the original HUNTER
functionality. Instead, a manageable set of HUNTER functionality was extracted and modified to achieve
the coupling. As a result, the functionality documented here is not identical to that of the larger HUNTER
effort behind the standalone tool and described in Boring et al. (2022) and Lew et al. (2022).

 22

Figure 11. A section of an EMRALD model in the JSON format specifying the HUNTER HRA event

5.2 Conceptual HUNTER Module Integration
The previous section provided background on how HUNTER was embedded into the EMRALD

framework, including some changes to EMRALD to accommodate unique characteristics of human
actions. Now, let us take a step back to effectively understand how HUNTER integrates into the
encompassing EMRALD framework. It is first important to establish at a high, conceptual level how the
context of the EMRALD model interacts with the HUNTER module. As can be seen in Figure 12 and
Figure 13, two simplistic EMRALD models were constructed to represent loss of feedwater and steam
generator tube rupture scenarios. The two EMRALD models for these scenarios are quite similar in that
an initiating event leads to an HFEa for diagnosing the issue, and then if that human task is successful, the
mitigation actions HFE is initiated to restore function for the affected plant components. EMRALD
continues processing the encompassing model for the remainder of the simulation run. This is a simplistic
model intended to show how HUNTER integrates with EMRALD, but in practice a more complicated
EMRALD model would encounter failures related to the specific HFE in addition to other failure modes.
In these more complicated models, the initial context conditions may be drastically different, and these
varying contexts are passed to HUNTER as opposed to simple distribution sampling of time that occurs in
simple models. Details for the HUNTER module integration are described next.

a Note that a human failure event is a scenario, not a guaranteed failure. An HFE has the opportunity for failure or success.

 23

Figure 12. Loss of feedwater EMRALD mode

Figure 13. Steam generator tube rupture EMRALD model

 24

Figure 14 contains the same loss of feedwater EMRALD model as depicted in Figure 12. However,
Figure 14 also contains the additional custom time event objects developed to support HUNTER. A
subsequent section will provide details on this new HRAEval event object created for EMRALD and its
internal logic used to evaluate the HFE. For present purposes, it is sufficient simply to understand that this
object represents the HUNTER module. This section will provide a detailed walkthrough of the model to
explain the overall integration and will make use of the numbered items in Figure 14 to explain the flow
of the model.

As with all EMRALD models, the simulation begins with a start state denoted with a 1 in Figure 14.
In practice this start state would likely be in another higher-level model, and this other model would
simply call the initiating event state labeled with a 2. The initiating event state samples an elapsed shift
start time that is used in the HUNTER module to calculate fatigue and fitness for duty. Figure 14
numbered states 3 and 4 are the HFEs to diagnose and mitigate the loss of feedwater, which contain the
actual HRAEval event object that executes the HUNTER module simulation. These two states are
identical in structure but represent two distinct human tasks that must be completed in order, since the
virtual operator must first diagnose the event as a loss of feedwater before the mitigation of the loss of
feedwater can occur.

Figure 14. Loss of feedwater EMRALD model with HUNTER module elements overlaid

Numbers with blue backgrounds represent existing EMRALD elements, while numbers with orange
backgrounds denote new objects developed to support the HUNTER module integration. The two shades of
red depict HEP and time failure states calculated by the HRAEval event.

 25

The HRAEval event logic is executed by the HUNTER module to return an elapsed time and an HEP
of several possible types. The HRAEval event serially completes individual tasks contained within the
specified procedure to generate a running total elapsed time. This process is explained in more detail later,
but in general each GOMS-HRA primitive is evaluated to determine the elapsed time and HEP. Each
primitive’s elapsed time is added to the total task elapsed time, which is checked against the available
time provided by the EMRALD model to determine if an overtime failure has occurred. It is important to
note that this occurs at the GOMS-HRA primitive level. As each primitive’s elapsed time is calculated, it
is added to the total and compared against the available time before proceeding to the next primitive.

Each GOMS-HRA primitive is evaluated for task completion success or failure in Monte Carlo
fashion by comparing the calculated HEP value to a randomly generated number between 0 and 1. If the
sampled number is less than the calculated HEP value, the task is designated and coded as a human
failure. The calculated HEP serves as an upper bound on the error rate. There are multiple ways in which
a failure could manifest, which is why there are four possible HEP failure states represented by the states
labeled with the blue background number 5 in Figure 14:

• PSF multipliers can result in the HEP exceeding a value of 1, which mathematically
guarantees an HEP failure result with the state labelled “HEPGtOneFailure” or, in plain
EMRALD influenced English, “HEP Go To One Failure”. The standard HEP failure in which
the calculated HEP exceeds the random generated number between 0 and 1 is the state
labeled “HumanErrorFailure.”

• Overtime failure in which the overall task time exceeds the time available is represented by
number 5 state labeled “OutOfTimeFailure.”

• HUNTER can be configured to allow each primitive to be repeated to represent a failed but
recoverable action in which the virtual operator can repeat the GOMS-HRA primitive
multiple times if the current execution is a failure. For example, this could represent the
operator attempting to look for a particular value, elapsing the corresponding time, not
finding it, and then looking again to find it. In previous HUNTER documentation, this has
been referred to as the “time-debt” repeat method to represent one form of human error. With
this mode enabled, the analyst can also designate the repetition limit for the GOMS-HRA
primitives, with a repeat limit of three being the value selected for the data presented in the
evaluation portion of this report. If the calculated HEP comparison to random number
generated between 0 and 1 fails three times, then the transition to “OnRepeatFailure” state
action is triggered.

• The final possible result state is labelled “MultipleFailure.” The multiple failure can result
from several different situations in which a combination of the three possible HEP failures
occur in sequence. This can only occur with the repeat mode enabled; otherwise HUNTER
would simply return with either “HEPGtOneFailure” or “HumanErrorFailure.” It is important
to note that HEP failure does not connotate an overtime failure, which will always be
captured by the “OutOfTimeFailure” state. Future versions may be able to remove the
“MultipleFailure” state outcome, but to ensure closure and HUNTER outcome resolutions it
was included in this initial development effort as a catch all for potentially unforeseen
modelling outcomes.

If the HRAEval event results in both an elapsed time within the available time limit and a successful
HEP outcome occurs, then the action to transition to the next HFE to mitigate the loss of feedwater event
is triggered. The mitigate loss of feedwater (“MitigateLOFW”) state, denoted by a blue background
number 4 in Figure 14, contains the HRAEval event, which is then executed in the same manner as was
described above. The configuration of the mitigate event is different, and in turn HUNTER follows a
different HFE, but the process is identical. The overall EMRALD model can fail here. Or, if the elapsed
time is within the available time limit and the HEP outcome is successful, then the action to transition to

 26

the “EventResolved” state, denoted by a blue background number 7, is triggered. “EventResolved” or any
of the failure state outcomes triggered by the HRAEval event object result in updating the time on shift
variable that captures the overall elapsed time for the model and immediately terminates by transition to
the terminate state labeled as the blue background number 8 item.

The next section will describe the HRAEval event in more detail to explain how the context of
encompassing EMRALD model and task configuration for an HFE is represented so that it can be passed
to the HUNTER module for execution.

5.3 HRAEval Event Object
EMRALD has a number of events that analysts can use to build PRA models for a given scenario.

However, none of the existing events provide the functionality required for the EMRALD-HUNTER
interface. Therefore, a custom time event, termed the HRAEval event, was developed to accommodate the
unique requirements for integrated HUNTER (see Figure 15). Specifically, this new custom HRA event
provides several key features and functions that are described in the following section to support the
EMRALD-HUNTER integration. The corresponding JSON file was previously shown in Figure 11.

Figure 15. Conceptual representation of the EMRALD HRAEval event that provides the interfacing
functionality between an EMRALD model and the HUNTER module

5.3.1 HRAEval Event Variable Exchange Functionality
The HRAEval event supports the ability to pass EMRALD variables to the HUNTER HRA engine

through a context link dictionary that can be seen in Figure 15. The names of the variables are analyst
defined and specific to a given EMRALD model. Therefore, the context link dictionary object provides
the method to map these variables to the standard set of HUNTER HRA engine variables used internally
to calculate PSFs that are applied to the GOMS-HRA primitive time distributions and HEPs. In practice,
this is achieved by the analyst tagging each EMRALD model variable with an appropriate HUNTER
HRA engine variable.

Conceptually, the variables can represent anything supported by EMRALD. HUNTER-relevant
variables are envisioned to come from external plant model simulation parameters acquired from external
simulation calls made through other event model objects in EMRALD. The initial effort presented in this
report does not include an external plant model, due to ensuring simplicity and usability of the
implementation. Instead, it defines HUNTER relevant variables within the EMRALD model as

 27

EMRALD sampled variables. There are nine EMRALD variables exchanged with the HUNTER module
as can be seen below in Table 5.

The outcome variables calculated by HUNTER are passed back to EMRALD by leveraging the action
object within EMRALD. The HUNTER module simply triggers an action to transition to the appropriate
outcome state. These outcome states can then be used as a standard EMRALD object to call other events.

In addition to serving as the conduit to exchange variables, the HRAEval event also serves as the
mechanism for the analyst to define the HFE task in the form of a procedure name string, a starting step,
and an ending step. The HRA module contains a small suite of prepopulated procedures. For flexibility,
the analyst specifies a starting and ending step so that only the relevant sections of the procedure are
performed. In its current form, the EMRALD-HUNTER codebase does not include the standalone
HUNTER functionality to evaluate the logic within the procedure and adjust course through the
procedure. The logic of the procedure is not evaluated, though prior versions of HUNTER have the
functionality to allow the state of the plant in conjunction with the outcome of the virtual operator
performing tasks to dictate the path through the procedure. Instead, in this instantiation, the procedure is
treated simply as an ordered sequence of steps, with each step containing one or more GOMS-HRA
primitives representing the actual tasks performed by the virtual operator to achieve the goals of each
individual step and procedure. An example of the procedure represented a JSON object can be seen in the
next section.

Table 5. Variables exchanged by EMRALD and HUNTER

Variable
HUNTER

Input
Hunter
Output Description

AvailableTime Yes Available Time to perform the EMRALD run
before failure

TimeRequired Yes Time needed for operator to complete task (used to
calculate Available Time PSF)

StartTimeOnShift Yes The time span an operator has been on shift used to
calculate fatigue and fitness for duty PSFs

TimeOnShift Yes Yes EMRALD current simulation time including
HRAEval time

HepGtOneFailure Yes Calculated HEP > 1 ensuring task failure

HumanErrorFailure Yes
Calculated HEP > random generated sample

resulting in task failure; only occurs if repeat mode
is disable

OutOfTimeFailure Yes While executing HUNTER simulation the available
time was exceeded

OnRepeatFailure Yes The maximum number of repeats was attempted
and all failed; only occurs if repeat mode is enabled

MultipleFailure Yes A combination of failures above were triggered

 28

5.3.2 HRAEval Event HRA Engine Logic
As a starting place, the procedure is represented simply as a sequence of steps, which must all be

executed in series to successfully resolve the initiating event. In their current form these steps directly
contain GOMS-HRA primitive designators in the form of two letter string codes (see Table 1 in Section
2.2.3). The primitive designators come from the HUNTER framework and conceptually can be viewed as
a collection of the smallest basic human tasks such as acquiring information, reading a procedure step,
and executing a control actuation. For the purposes of this development and evaluation effort, the GOMS-
HRA primitives can simply be viewed as the nominal time and HEP distributions associated with each
step of the procedure. For each GOMS-HRA primitive in the model, the nominal time and HEP are
sampled and then modified by associated PSFs. Figure 16 below shows how the procedure is executed.

Figure 16. Pseudocode for the procedure execution representing the central functionality of the HUNTER
HRA engine used to calculate human success or failure and the elapsed time for each task

HRAEval is intended to allow users to specify partial tasks within EMRALD like diagnosing a steam
generator tube rupture or taking mitigating actions. The HRAEval event allows users to specify a
procedure name, the starting step, and an ending step so that users can decide the level of granularity they
need in their model down to a single step (see Figure 17). HRAEval also allows users to define contextual
variables including available time, time required, time on shift, and static PSF variables to be used by the
HRA Engine for calculating PSF time and HEP multipliers and ultimately elapsed time for the event and
success and failure of the event.

 29

Figure 17. EMRALD-HUNTER interface for predefined procedures

 30

6. DYNAMIC PERFORMANCE SHAPING FACTORS IN EMRALD-
HUNTER

6.1 Introduction
HUNTER was originally conceived as a dynamic implementation of the static SPAR-H HRA method

(Boring et al, 2017). The HUNTER framework has since made great strides in its ability to use PSFs.
Particularly innovative is a first-of-a-kind use of PSFs to influence not only the HEP but also task time.
Previous versions of HUNTER (e.g., Boring et al., 2022) had some experimental work for using PSFs for
task duration but did not in practice use PSFs for calculating time. With HUNTER embedded in
EMRALD, we have a fully implemented version of the eight SPAR-H PSFs. We model four PSFS—
Fitness for Duty, Stress, Available Time, and Experience and Training—dynamically. In Section 6.3 we
describe Fitness for Duty; in Section 6.4, Stress; and in Section 6.5, Experience and Training. First, in
Section 6.2, we discuss the dynamic treatment of the PSF for Available Time. In the interest of a
parsimonious proof of concept for making the SPAR-H PSFs dynamic, we sought to restrict modeling to
the original eight SPAR-H PSFs. However, as might be expected within dynamic HRA and the treatment
of time, there remain some concepts that do not transfer between static and dynamic HRA. Thus, the next
section introduces Time Pressure as an extension to the original PSF list. The remaining four PSFs are
treated as static PSFs that can be specified by the analyst. Each of these PSFs has a Diagnosis and Action
variant, corresponding to the separate treatments in SPAR-H for cognitive vs. behavioral tasks,
respectively. The levels of these variants are consistent across the factors, but sometimes the multipliers
for Diagnosis factors are higher than their Action counterparts (Boring and Blackman, 2007).

Figure 18 outlines the types of dynamic PSF configurations that are possible in HUNTER. PSFs may
be either manually assigned (akin to static HRA) or automatically assigned for their initial state. They
may then experience a dynamic progression such as adjusting for lag and linger (i.e., delay and decay
functions) over time (Boring, 2015; Park, Boring, and Kim, 2019). They may also be automatically
calculated based on emerging conditions (Boring et al., 2017). Figure 18 shows an example where PSFs
are automatically assigned at the onset of the HFE scenario run and then updated dynamically for context.
In practice, in EMRALD-HUNTER, PSFs are assigned manually by the analyst at the scenario outset and
then updated for lag and linger functions. Table 6 shows how PSFs are determined in EMRALD-
HUNTER, while Table 7 shows how PSFs map to GOMS-HRA primitives, since every primitive is not
relevant to every PSF.

Figure 18. Types of PSF assignments possible in HUNTER

Type of Assignment

Manually
Assigned

Automatically
Assigned

Type of Update

Initial

Manual Initial
Conditions

Automatic Initial

Conditions

Dynamic
Progression

Adjust PSF

effect for lag
and linger

Dynamic Context

Adjust PSF
based on

plant
parameters

 31

Table 6. Treatment of PSFs in EMRALD-HUNTER

Factor Operation ID Levels (Multipliers) Static

AvailableTime Action ATa InadequateTime (9999),
BarelyAdequateTime (10), NominalTime

(1), ExtraTime (0.1), ExpansiveTime (0.01)

AvailableTime Diagnosis ATd InadequateTime (9999),
BarelyAdequateTime (10), NominalTime

(1), ExtraTime (0.1), ExpansiveTime (0.01)

Complexity Action Ca HighlyComplex (50), ModeratelyComplex
(20),

Nominal (1), ObviousDiagnosis (0.01)

Yes

Complexity Diagnosis Cd HighlyComplex (5), ModeratelyComplex
(2),

Nominal (1), ObviousDiagnosis (0.001)

Yes

ErgonomicsHMI Action Ea MissingOrMisleading (50), Poor (20),
Nominal (1),
Good (0.1)

Yes

ErgonomicsHMI Diagnosis Ed MissingOrMisleading (5), Poor (2), Nominal
(1),

Good (0.01)

Yes

ExperienceAndTraining Action EaTa Low (10), Nominal (1), High (0.5)

ExperienceAndTraining Diagnosis EaTd Low (3), Nominal (1), High (0.5)

FitnessForDuty Action FfDa -

FitnessForDuty Diagnosis FfDd -

Procedures Action Pa NotAvailable (100), Incomplete (50),
AvailableButPoor (20), Nominal (1),
DiagnosticOrSymptomOriented (0.1)

Yes

Procedures Diagnosis Pd NotAvailable (10), Incomplete (5),
AvailableButPoor (2), Nominal (1),

DiagnosticOrSymptomOriented (0.01)

Yes

Stress Action Sa Extreme (50), High (20), Nominal (1)

Stress Diagnosis Sd Extreme (5), High (2), Nominal (1)

WorkProcesses Action WPa Poor (5), Nominal (1), Good (0.05) Yes

WorkProcesses Diagnosis WPd Poor (5), Nominal (1), Good (0.05) Yes

 32

Table 7. Relationships between GOMS-HRA operations and PSFs in EMRALD-HUNTER

Operation Sub Operation Relevant PSFs

Action controlRoom Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

Action field Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

Checking controlRoom Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

Checking field Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

Retrieval controlRoom Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

Retrieval field Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

InstructionCommunication produceWrittenOrVerbal Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

InstructionCommunication receiveWrittenOrVerbal Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

Selection controlRoom Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

Selection field Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa

Decision basedOnProcedures Sd, ATd, Cd, Ed, EaTd, FfDd, Pd, WPd, TPd

Decision withoutProcedures Sd, ATd, Cd, Ed, EaTd, FfDd, WPd, TPd

6.2 Dynamic PSF for Available Time and Time Pressure
The level for the Available Time PSF is calculated dynamically using the traditional approach of

SPAR-H when both time available and time required are specified. When these attributes are not
provided, the Available Time PSF is set to nominal. However, it is important to note that having a
dynamic HRA system that calculates traditional categorical PSF levels for Available Time should be used
with caution. If we step back, the purpose of the Available Time PSF is to capture failures due to running
out of time. In fact, in SPAR-H, when there is inadequate time, the overall HEP is set to 1.0 (see Table 8).
However, with HUNTER we explicitly track time with every run, and if Available Time is specified,
HUNTER has internal logic to fail the task when the task duration (i.e., Time Required) exceeds
Available Time. Therefore, care should be taken to avoid double penalizing tasks by setting Time
Tequired equal to or greater than Available Time. We have elected to not co-opt the common notion of
the Available Time PSF. Available Time is implemented and calculated when Available Time and Time
Required are provided to HRAEval events as part of the HFE context.

 33

Table 8. Available time PSF levels and multipliers in SPAR-H

Task Type Available Time PSF Level Multiplier Value

Diagnosis Inadequate Time HEP = 1.0

Barely Adequate Time 10

Nominal Time 1

Extra Time 0.1

Expansive Time 0.01

Action Inadequate Time HEP = 1.0

Time Available = Time Required 10

Nominal Time 1

Time Available ≥	5	x	Time	Required 0.1

Time Available ≥	50	x	Time	Required 0.01

Empirical data have shown that licensed operators can perform procedures in a slow and cautious
manner as well as more expedient but careful manner. For this reason the ability to provide Time Pressure
to expedite the pace of procedures is necessary to match empirical data. We have elected to include a
ninth PSF for Time Pressure. The Time Pressure PSF only affects the aggregate PSF time multiplier and
does not affect the HEP multiplier. Table 9 below lists the PSF factors that impact time.

Table 9. PSFs with time multipliers in HUNTER

Factor Operation ID Level (Time Multiplier) Static

ExperienceAndTraining Action EaTa Low (3) Yes

ExperienceAndTraining Diagnosis EaTd Low (3) Yes

TimePressure Action TPa High (0.5), Nominal (1) Yes

TimePressure Diagnosis TPd High (0.5), Nominal (1) Yes

Time Pressure is needed to calibrate the pacing of HUNTER. In a previous effort (Lew et al., 2022),
we used HUNTER to model task completion times for a loss of feedwater scenario and startup scenario
with the Rancor Microworld Simulator (Ulrich et al., 2017). The estimated task times for startup, a
normal operating procedure, where very close between HUNTER and Rancor. However, HUNTER took
nearly twice as long as operators in completing the loss of feedwater scenario. This suggests that
operators are capable of expediting their pace when necessary. This effect is captured with the Time
Pressure PSF.

 34

6.3 Dynamic PSF for Fitness for Duty
6.3.1 Introduction

SPAR-H (Gertman et al., p. 25) defines Fitness for Duty as:

whether or not the individual performing the task is physically and mentally fit to perform the task
at the time. Things that may affect fitness include fatigue, sickness, drug use (legal or illegal),
overconfidence, personal problems, and distractions. Fitness for duty includes factors associated
with individuals, but not related to training, experience, or stress.

For the purposes of HUNTER, the dynamic treatment of the Fitness for Duty PSF is calculated according
to two dimensions—Fatigue and general Fitness for Duty—which highlight physical and mental
decrements, respectively.

6.3.2 Fatigue
As discussed, the Experience and Training and Time Pressure PSFs have levels with time multipliers.

In aggregate these are used to scale the time sampled from the GOMS Task Primitive distributions. Time
is also influenced by operator fatigue. In previous iterations of HUNTER we used the third order
polynomial function presented in Figure 19. A curve-fitted equation was presented based on the data of
Folkard (1997). Equation 1 can evaluate the relative fatigue index according to the hour on duty.

 (1)

where y is the fatigue index and x is the number of hours on duty.

Figure 19. Time dependent 3rd order polynomial fatigue index based on Folkard (1997)

! = 0.0054 "3 − 0.0939"2 + 0.4271" + 0.599 ($2 = 0.6912)

 35

The fatigue index is used as a time multiplier in HUNTER. A notable shortcoming of this model is
the exponential growth after 10 or so hours on shift. The last fitted data point is at 13 hours. If left
unabated, task time estimates are 9.36 times slower if operators are 18 hours on shift. While 18 hours is
an unreasonably long shift duration, if that were to occur, the time decrement is abnormally large and not
empirically justified. Generally speaking, fitted models, especially those that grow exponentially,
shouldn’t be trusted outside of their range. The fatigue index is meta analytic modeled from datasets
examining fatigue (Folkard, 1997). Studies have shown that fatigue is influenced by numerous factors like
shift duration, average duty cycle of shifts (e.g., working 3 consecutive 12-hour shifts), cumulative
components, and time working on shift (Boring et al., 2020). Fatigue is also influenced by circadian
arousal cycles. The data illustrate that the circadian cycle has a peak amplitude of around 50%. The data
also illustrate that on average fatigue is 100% (relative fatigue index of 2) slower at 13 hours. The relative
fatigue then roughly doubles over 2 hours (see Figure 19). When we take a closer look at the Folkard
(1997) dataset we see standard errors of +/- 0.25, suggesting a fair amount of individual variation (see
Figure 20).

Figure 20. Fatigue risk rates with standard error from Folkard (1997)

To accommodate for individual variability, the polynomial model has been adapted to a factorial model
that simulates a circadian phase, followed by a baseline phase, and finally a fatigue onset phase in Figure
21. The revised model has an R-squared over the same datapoints of 0.81 compared to the third order
polynomial model in Equation 1, with R2 = 0.6912. But, more importantly, the revised model randomizes
baseline fatigue, peak fatigue, time to fatigue onset, fatigue transition time, circadian amplitude, and
circadian phase by sampling normal distributions to mimic human variability.

 36

Figure 21. Simulated fatigue index values from revised factorial fatigue index model in blue and observed
values from Folkard (1997) in red

Figure 22. Ensemble plot of dynamic fatigue curves generated from stochastically setting revised fatigue
model parameters

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

Simulated vs. Observed

0

0.5

1

1.5

2

2.5

3

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

40
6

42
1

43
6

45
1

46
6

48
1

49
6

Ensemble of Revised Fatigue Models

Series1 Series2 Series3 Series4 Series5

Series6 Series7 Series8 Series9 Series10

 37

Figure 22 has an ensemble of ten randomly generated fatigue models. The models have varied fatigue
baselines, fatigue onset times, as well as peak fatigue levels after which the model holds steady. The
multiplier is bounded by 0.3333 to prevent abnormally fast execution (3x normal speed). The C#
implementation of the revised model is in Figure 23. In summary, time in HUNTER is influenced by both
PSF time multipliers and the fatigue index.

Figure 23. Function that calculates adjusted time in HUNTER as a function of fatigue

6.3.3 Fitness for Duty
The fatigue index attempts to model decrements in the time required to complete tasks, but does not

directly account for accuracy or cognitive effects. If operators do have to work beyond 14 hours how is
their cognition likely to be impacted? A well-documented psychological phenomenon is the speed-
accuracy tradeoff (Heitz, 2014), whereby as speed increases, accuracy declines. In terms of fatigue,
accuracy reflects the cognitive effects. From Belenky (1994) we know that accuracy does decline with
sleep deprivation, but at gradual pace out to 70 hours. Figure 24 depicts the decline in speed-accuracy per
Belenky, and Figure 25 provides an ensemble plot of speed-accuracy from HUNTER. The fatigue index
is inverse speed. So, by multiplying speed-accuracy by the fatigue index, we can obtain accuracy.
Accuracy is the inverse of error rate, which is exactly what PSF multipliers are estimating. This means we

can model accuracy—the inverse of human error—using the fatigue index and the speed-accuracy.
First, we fit a second order polynomial fit to the decay curve. Then a dynamic Fitness for Duty PSF
multiplier can be calculated as shown in Figure 26.

 38

Figure 24. The impact of sleep deprivation on cognitive performance out to 72 hours (from Belenky,
1994)

Figure 25. Ensemble speed-accuracy curves from HUNTER with stochastically final accuracy

Time (Hours)

Sp
ee

d
x A

cc
ur

ac
y

 39

Figure 26. C# code to capture the relationship between speed, accuracy, and a fitness for duty PSF
multiplier

Figure 27 depicts ensemble trends of dynamic Fitness for Duty over a duration of 72 hours. In the
HRAEval event a fatigue-speed-accuracy model has been implemented to replace the polynomial fatigue
index function with dynamic factorial model of fatigue index with stochastically generated parameters.
Note that the peak multiplier around 5 hours is representative of the after-lunch fatigue phenomenon. In
conjunction with the speed-accuracy component of the model, the dynamic Fitness for Duty PSF is
calculated as an inverse of the accuracy estimate.

Figure 27. Ensemble plots for the dynamic Fitness for Duty multiplier over 72 hours

Time (Hours)

M
ul

itp
lie

r

 40

6.4 Dynamic PSF for Stress
6.4.1 Introduction

Stress refers to internal factors that cause mental tension and affect the ability of a person to focus and
carry out activities. Stressors are a similar mental tension caused by external factors. Together, Stress and
Stressors (commonly referred to simply as Stress) form a PSF that can have positive as well as negative
effects. However, in SPAR-H, this PSF represents the level of undesired conditions that operators face
while performing tasks, such as mental stress and excessive workload. SPAR-H classifies Stress and
Stressors into three levels: Extreme, High, and Nominal. The Extreme level is when the person is
subjected to disruptive stress, such as when it is sudden and sustained for a long time, and a multiplier of
5 is imposed. The High level defines a stress level higher than the nominal level due to factors like
unexpected alarms, sustained noise, etc., and a multiplier of 2 is assigned. The Nominal level is a stress
level conducive to good performance, and the multiplier is set to 1. In the absence of information, an error
probability of 1 is charged for Stress and Stressors

The dynamic PSF for Stress and Stressors has been described in detail previously (Park, Boring, and
Kim, 2019). First, stress increases dramatically until it reaches a maximum level (Dorin er al., 2012) and
returns exponentially to a normal state after a certain period (Vitousek et al., 2018). Boring et al. (2022)
provide mathematical models of the stress PSF that consider both lag of stress kicking in and the lingering
impact of stress over time. These models are shown in Figure 28 when the task execution time is under 60
minutes, and in Figure 29when the task execution time is after 60 minutes.

⎩
⎪⎪
⎨

⎪⎪
⎧

	

2 = 1																																																																							[6 < 8]										

2 =
: − 1

ln(? − 8 + 1)
ln(6 − 8 + 1) + 1												[8 ≤ C < ?]

2 = exp F−
ln(:)
G −H

(6 − G)I																												 [H ≤ 6 < G]

2 = 1																																																																							[G ≤ 6]									

Figure 28. A mathematical model of the stress PSF when the time to perform a task is less than 60
minutes (from Boring et al. 2022)

 41

⎩
⎪
⎪
⎨

⎪
⎪
⎧

	

2 = 1																																																																							[6 < 8]										

2 =
: − 1

ln(? − 8 + 1)
ln(6 − 8 + 1) + 1												[8 ≤ C < ?]

2 = :																																																																							[? ≤ 6 < H]

2 = expF−
ln(:)
G −H

(6 − G)I																												 [H ≤ 6 < G]

2 = 1																																																																								[G ≤ 6]										

Figure 29. A mathematical model of the stress PSF when the time to perform a task is greater than 60
minutes (Boring et al. 2022)

For both Figure 28 and Figure 29, T is the starting time of a task, Q is time to reach a maximum HEP
value in a task, and R is time to return to nominal HEP level. M is the time to finish a task, which is the
sum of the time required and the time to start of a task. K is a multiplier value from HUNTER, which is
generally assigned as 1 (Nominal), 2 (High), or 5 (Extreme) in SPAR-H. f(M) is a PSF level limited by
the lag effect when the time to perform a task is less than 60 minutes.

Stress also impacts cognitive decision making. Stressors can come from a variety of undesirable
conditions and circumstances and imped operators from optimally performing a task. Here we build on
the lag and linger model of stress (Boring 2015; Park, Boring, and Kim 2019). The lag and linger model
of stress is based on physiologically observed cortisol levels in humans in response to stress stimuli. After
a stimulus is applied, there is a lag in the time it takes for the stress to reach peak levels. This lag is
typically around 1 hour. Similarly, after a stressor has been removed the effects of stress and cortisol
levels linger until they return to normal after approximately 3 hours. When a stress stimulus remains after
1 hour, the stress level is sustained with previous lag and linger model. The trigger to remove stress is
when the task has been completed or the required time required has expired. But, what if the task is never
completed? What if the task cannot be completed or the time required to complete the time is several days
or weeks? Physiologically humans adapt over to stressful stimuli and will eventually become exhausted.

Here we have refined the lag and linger model to include adaptation. We refer to this model as Lag-
Adapt-Linger (see Figure 30). The revised model can dynamically simulate the presentation and removal
of stress events and is presented in Figure 31. Figure 32 shows the ensemble model put into practice with
stress applied and removed across ten samples.

 42

Figure 30. Idealized lag, adapt, and linger curves from when the task is completed before the peak level
has been reached (orange), before the lag period (gray), and before available time expires (blue)

Figure 31. Idealized combined effect lag-adapt-linger curves from when the task is completed before the
peak level has been reached, before the lag period, and before available time expires

 43

Figure 32. Ensemble of ten lag-adapt-linger models with stressor introduced at 1 minute and removed at 3
hours

6.4.2 Context Parameters
Three key time parameters can be specified as context links for HRAEval events. These specify

ShiftTime (the time the operator has been on shift), AvailableTime (the time the operator has to complete
the EMRALD Run), and TimeRequired (the time required for an operator to complete the tasking). Each
of these parameters can be specified in seconds, minutes, or hours. For example, ShiftTimeH will specify
time on shift in hours, and AvailableTimeM will specify the time available to complete the run in
minutes. These variables should specify EMRALD SimVariables defined as doubles. (Note: If
TimeRequiredM = 30 and TimeRequiredH = 1.5 are both specified, HUNTER will sum these and
internally assign TimeRequired to 2 hours).

In addition to these time parameters, static PSF levels can be set as context parameters. The context
name should be the PSF (e.g., Stress). For convenience, the PSF levels pre-load into EMRALD’s global
SimVariables. For example, Stress can be specified as Extreme as follows:

 {

 "contextName": "Stress",

 "simVar": "Psf.Stress.Extreme"

 }

 44

6.5 Dynamic PSF for Experience and Training
6.5.1 Existing Treatment of Experience and Training as a PSF

Experience and training are among the key factors used to prevent or mitigate human error. In all
countries that operate nuclear power plants, a formal educational system is provided to ensure reliable
operation of nuclear reactors, and systematic training is conducted. Full scope simulator training (Swaton
et al., 1987), which includes the reactor core and coolant systems, helps operators not only comprehend
the nuclear power plant system, but also practice recognizing problems in case of an accident, making
decisions, and taking appropriate actions. Through experience and training, it is possible to identify
potential human errors and enhance the performance of operators.

One challenge in conducting HRA data collection is the extensive amount of training found in nuclear
power plants. Reactor operators and other plant personnel are highly specialized and in demand. Yet, the
high skill makes it difficult to perform research on participants with lower experience and training. Due to
the constraints of cost, time, and its complexity, performing full scope simulator studies to collect HRA
data can be challenging. However, limited functions or data collection on human error can be practiced
with simplified simulators such as the Rancor Microworld Simulator (Rancor) and Compact Nuclear
Simulator (CNS) (Park et al., 2023; Park et al., 2021), using either student or professional reactor
operators. One such study relevant to experience and training will be detailed later in this section.

In existing HRA methods, the level of the Experience and Training PSF is determined based on
expert judgment, and a multiplier is applied to the nominal HEP. The higher the PSF multiplier, the
greater the HEP. The Experience and Training PSF, like all PSFs in SPAR-H (Gertman et al., 2005),
distinguishes between Diagnosis and Action and is divided into three levels. For Diagnosis, the multiplier
is 10 for the Low level (signifying a 10x increase in error when experience and training are low), 0.5 for
the High level (signifying a ½ decrease to credit experience and training), and 1 for nominal or
insufficient information cases (signifying no change over the nominal error rate). For Action, the
multiplier is 3 for the Low level, 0.5 for the High level, and 1 for nominal or insufficient information
cases. The original HRA method, Technique for Human Error Rate Prediction (THERP; Swain et al.,
1983), categorizes the experience level as skilled and novice with the multiplier ranging from 1 to 2.
Novice includes operators who have less than 6 months of experience with a reactor operator (RO)
license, auxiliary operators (AO), maintainers, and technicians. As it is generally accepted that full
performance capability requires about 6 months of experience, the training year is also taken into account
(Swain et al., 1983). The Accident Sequence Evaluation Program (ASEP) method (Swain et al., 1987), a
simplified version of THERP, divides into the cases where training is not considered and cases where
well-known and practiced events are handled. In these cases, the multipliers of 10 for upper bound and
0.1 for lower bound are applied. Otherwise, the nominal HEP is applied. Cognitive Reliability and Error
Analysis Method (CREAM; Hollnagel et al., 1998) evaluates the adequacy of training and preparation,
taking into account the readiness of the work or familiarization. The PSF has three levels, with the
multipliers ranging from 0.8 to 2.

Experience and training PSFs define several parameters, including the time elapsed since training or
the period of requalification training, the quality of training, and existence of training. If there has been a
lack of requalification training or a significant amount of time has elapsed, the PSF level is evaluated as
Low. On the other hand, if the crew has just completed 10 days of refresher training, the PSF level is
assumed to be Nominal or High. When considering the quality of training, inadequate training such as
reluctance to use water to extinguish a fire or relying on incorrect guidance is assumed to correspond to a
Low level of the PSF. Additionally, a general lack of training is evaluated as a Low level, while simulator
training is regarded as a High level of the PSF (Gertman et al., 2005).

 45

6.5.2 Experience and Training PSF Based on Objective Parameters
A brief overview of the relevant cognitive mechanisms known to govern experience and training

provides the rationale for defining the experience and training PSF in HUNTER. The human information
processing model people use to make decisions is depicted in Figure 33. This model comprises short term
memory, working memory, long term memory, recall, and response (Campbell et al., 2002). Short term
memory retains information over a short period of time. As shown in Figure 34 (left), recall performance
for short term memory diminishes over time. Long term memory stores repetitive or long-standing
memories, such as semantic memory or episodic memory. However, long term memory also has its
limitations, and its performance can be improved through overlearning and increasing the recall number,
as shown in Figure 34 (right). Working memory is a process of converting information from short term
and long term memories into cognitive and physical actions such as decision, and includes some
processing mechanisms such as chunking to enhance the memories (Cowan et al., 2008).

Figure 33. Human information processing model (from Campbell et al., 2002)

Figure 34. Recall probability depending on retention interval for short term memory (left) and recall
ability depending on the number of recalls (right) (from Campbell et al., 2002)

 46

Short and long term memories can both contribute to deteriorated human performance (Swain et al.,
1983), but training can help memory capacity. In a dynamic flight emergency, a pilot’s intuition is critical
when making decisions. This is an unconscious process from memories stored through experience. To
strengthen this ability, it is recommended to enhance training, expand experience, and repeat it
(Manurung et al., 2022). Swaton et al. (1987) also suggests that operators can enhance their performance
by continuing training with retraining to update and expand their knowledge and skills. In
cardiopulmonary resuscitation (CPR) experiments (Curry et al., 1987), the training effect showed
improved performance, but this improvement cannot be sustained for more than 6 months. Thus, the
importance of regular training programs is suggested to maintain good performance.

However, there is no specific analysis of the effect over specific parameters such as time in existing
HRA methods, except for the classification of skilled and novice operators based on six months of
experience in THERP (Swain et al., 1983). In SPAR-H, one of the factors for evaluating the Experience
and Training PSF is time elapsed since training or periodic requalification training (German et al., 2005).
As time elapses, the effect of experience and training on positive performance decreases due to the
deterioration of memory over time, which can be represented by a forgetting curve. On the other hand, as
the amount of experience and training increases, the effect of the experience and training performance
may increase, indicating the capacity for long term memory.

The forgetting curve depicts the relationship between memory retention and time elapsed. Ebbinghaus
(Wixted et al., 1991, Murre et al., 2015) was the first to propose the forgetting curve, which is fitted with
a power function or a logarithmic function, indicating a rapid decrease in memory retention over time.
Although Murre et al. (2015) successfully replicated Ebbinghaus’ experiment, there is no universally
agreed upon form of the forgetting curve among researchers (White et al., 2001; Jaber et al., 2004).
Nevertheless, it is generally accepted that the curve illustrates a decline in memory performance over
time, with performance improving as additional review is implemented.

The Experience and Training PSF can be dependent on the time elapsed since training and the amount
of training, as illustrated by the forgetting curve. It is possible to predict human performance related to the
PSF based on the trend depicted in Figure 35 (cf. Kim et al., 2021).

Figure 35. Predicted memory performance depending on time elapsed

 47

6.5.3 Experience and Training Effects Evaluated from a Simplified Simulator
Study

The data from a recent study (Kim et al., 2023) evaluating the use of simplified simulators to collect
human performance data to inform HRA methods was further analyzed to examine experience and
training effects. The study was structured such that the student participants completed four sessions of
simulator scenarios, each separated by approximately two weeks. These data provided the opportunity to
evaluate experience and training effects longitudinally.

6.5.3.1 Methods for Study
Rancor is a simplified nuclear power plant simulator developed by INL and University of Idaho

(Ulrich et al, 2017). Using Rancor, an experimental participant can identify the status of components and
systems in both normal and emergency situations and practice simulated operations with simplified
procedures. In this study, the participants were students who lacked extensive experience and knowledge
about operating nuclear power plants. The study design is specifically structured to observe the outcomes
of training and experience over time with participants who had little prior knowledge or experience in
nuclear power plant operations.

The study was conducted with 16 students majoring in nuclear energy at Chosun University in South
Korea (Kim et al., 2023). They performed 10 simplified scenarios including start up, shut down, manual
rod control during startup, manual feedwater flow control during startup, failure of a reactor coolant pump
under full power operation, failure of a control rod under full power operation, failure of a feedwater
pump under full power operation, turbine failure under full power operation, and steam generator tube
rupture. Four trial sessions of experiments were scheduled, with each trial featuring four scenarios.
Different, randomly selected scenarios were performed in each trial, although there are some overlapping
scenarios across all the trials. While analysis within the same scenario across multiple trials would have
been ideal, the simplified scenarios and procedures ensure a reasonable approximation. There was an
average interval of 14 days between rounds.

Figure 36. Number of errors across trials

 48

6.5.3.2 Results of Study
The first analysis examines errors of commission—in which participants fail to take appropriate

actions—and errors of omission—in which they omit the procedures while following the designated
procedures. The result, as depicted in Figure 36, indicates decreases in the number of commission and
omission errors as the number of trials increases. The reduction in errors can be attributed to the training
effect, which enhances the participants’ experience and training performance over successive trials.

The second analysis aimed to determine the impact of training on human performance by measuring
the average time to complete a task and the error rate. Figure 37 shows the distributions of these variables
based on the number of trials. As the number of trials increases, the means of these distributions decrease,
indicating an improvement in human performance with increased training.

Figure 37. Distribution of average time to complete a task (left) and error rate (right) depending on trials

Furthermore, the results of the experiment also indicate that within the same experiment, the average
time to complete a task and the error rate both decrease as the number of trials increase, as shown in
Figure 38. However, when another experiment is conducted again after a period of time, there is a
decrease in performance, which is then followed by an improvement as the number of trials increases.
This suggests that the effectiveness of training is not permanent and may decay over time, but can be
regained through additional training. This finding mirrors the crests and troughs of the forgetting curves
over time as shown in Figure 35.

Figure 38. Means of average time to complete a task (left) and error rate (right) depending on
experimental rounds and trials

 49

6.5.4 Proposed General Form of Experience and Training PSF
While there is no generalized form of experience and training that can be derived absent training

context, it is possible to calibrate high levels of training (indicated by repeated training trials) to the
multiplier levels in SPAR-H for the Experience and Training PSF. Additionally, it is possible to model a
decay curve as a function of elapsed time since last training. This forgetting curve is reset with refresher
training. However, over time with additional training and experience, the forgetting curve is not as strong,
indicating a shallower slope. Additional empirical data points are necessary to calibrate the function, but
it generally takes the form:

 (2)

where:

• Xt is the multiplier for training and experience in SPAR-H at given time t,

• X0 is the initial experience and training,

• e is the base of the natural logarithm,

• L1 is the decay constant for the number of trainings, a positive value related to the decay over
time,

• L2 is the growth constant for the time elapsed since training, a positive value related to the growth
over time,

• N is the number of trainings, and

• T is the total time elapsed.

This form of the equation only accounts for nominal or negative influences of Experience and
Training as denoted by PSF multipliers ≥ 1. Because SPAR-H Action tasks would have a range of 1-3,
the maximum value is 3 and minimum value is 1 in Equation 2. Equation 2 decreases exponentially with
respect to the number of trainings and increases exponentially with respect to the time elapsed since
training. Currently, the constants, L1 and L2, are unknown, but the constant, L1, for the number of trainings
would be a small number for highly skilled individuals, indicating a slow decay, and a large number for
less skilled individuals, indicating a fast decay. When refresher training is administered, it restarts the
function, with Experience and Training at a high level, as denoted by a low PSF multiplier. The constant,
L2, for the time elapsed since training is related to the effect of growth, so it would be less than the
constant for the number of trainings.

Note that X is a multiplier that is inversely related to experience and training. The lower the
experience and training, the higher the actual Experience and Training PSF is, and the higher the error
probability will be. Conversely, high levels of experience and training would result in a low multiplier.
Thus, the decay function of forgetting results in an increase in X, effectively making it a growth function
for the HEP.

The study discusses the effects of training on the Experience and Training PSF multiplier with the
assumptions made in Equation 2. The values of L1 and L2 are assumed to be 0.01 and 0.001, respectively,
and the initial multiplier is assumed to be 5. The modeling assumes that the multiplier has a range of 1 to
10, although in actual SPAR-H, it has a range of 1-3. The results show that the multiplier decreases with
the number of trainings, as shown in Figure 39, and increases with time elapsed since training, as shown
in Figure 40. The study assumes a larger decay constant than the growth constant, resulting in a faster rate
of decrease.

!! = !0 "−L1N+L2T

 50

Figure 39. Experience and Training PSF multiplier decreasing depending on the number of trainings (L1 =
0.01, L2 = 0.001)

Figure 40. Experience and Training PSF multiplier increasing depending on the time elapsed since
trainings (L1 = 0.01, L2 = 0.001)

Additionally, the study shows the effect of training cycle on the multiplier, as shown in Figure 41 and
Figure 42, which demonstrate the changes in the Experience and Training PSF based on both of the
number of trainings and the training cycle. Figure 41 shows the case of training for 10 days in an interval
of 40 days, and Figure 42 shows the case of training for 5 days in an interval of 3 months. However, it
should be noted that the constant values used in the study are assumptions, and training for 5 days in an
actual 3-month cycle would not necessarily degrade performance.

0

1

2

3

4

5

6

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106113120127134141148

M
ul

tip
lie

r

The number of training

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106113120127134141148

M
ul

tip
lie

r

The time elapsed since training

 51

Figure 41. Experience and Training PSF multiplier for 10 days of training in a 40-day cycle (L1 = 0.01, L2
= 0.001)

Figure 42. Experience and Training PSF multiplier for 5 days of training in a 3-months cycle (L1 = 0.01,
L2 = 0.001)

3.5

3.7

3.9

4.1

4.3

4.5

4.7

4.9

5.1

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106113120127134141148

M
ul

tip
lie

r

Time

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106113120127134141148

M
ul

tip
lie

r

Time

 52

7. SAMPLE ANALYSES
7.1 Introduction

To test and demonstrate the EMRALD-HUNTER coupling, two scenarios were modeled and run. The
outputs of the EMRALD-HUNTER models were benchmarked against outputs from the standalone
version of HUNTER for steam generator tube rupture (SGTR; Boring et al., 2022) and loss of feedwater
(LOFW; Lew et al., 2022) scenarios.

7.2 Steam Generator Tube Rupture (SGTR)
7.2.1 SGTR Description

In a pressurized water reactor (PWR), the steam generator plays a crucial role in the transfer of heat to
produce steam for the secondary side, which in turn drives the generator to generate electricity. Moreover,
after the reactor is shut down, heat transfer serves to remove decay heat. The steam generator is also
essential in isolating the primary side, which may contain radioactive material, from the secondary side. If
one or more tube ruptures occur in the steam generator, the flow can leak from the primary side to the
secondary side due to the higher pressure on the primary side. As a result, the core level in the primary
side decreases, and a charging pump and safety injection system are required to recover the coolant. It is
also important to isolate the defective steam generator to prevent any radioactive material from leaking
into the secondary side, which may release into the environment.

In the past, several SGTR accidents have occurred, but they have not caused significant doses to the
public as reported in NUREG/CR-6365 (MacDonald et al., 1996). Some historic SGTRs involving
operator performance include:

• An SGTR accident occurred in 1991 in steam generator A of Mihanma Unit 2 due to high
cycle fatigue. When the air ejector high radiation alarm and the secondary steam blowdown
radiation monitor alarmed, the operator promptly started the charging pump and reduced the
reactor power to shut it down. The reactor automatically tripped, and the turbine also tripped.
The safety injection pump was automatically started due to the low level of the pressurizer
and low pressure of the reactor coolant system (RCS). The operator identified the defective
steam generator and isolated the main steam line isolation. However, a manual closing action
was required as the valve did not close properly. Subsequently, the operator opened the steam
relief valve to cool the RCS in the intact steam generator and used the pressurizer auxiliary
spray to depressurize the RCS. As the RCS pressure lowered, the leak flow was reduced, and
the pressurizer level was restored. Then, the operator stopped the two safety injection pumps.
In this accident, the radiation alarm was the first indication of SGTR, and the operator's
prompt response prevented the escalation of the accident.

• In 1993, tube rupture occurred in steam generator 2 of a unit at Palo Verde Nuclear
Generating Station due to outside diameter stress corrosion cracking from tube-to-tube
crevice formation. The pressure and level in the pressurizer decreased, and the operator
immediately started the charging pump and energized the pressurizer heater to restore the
level and pressure. However, the level and pressure continued to decrease, leading to de-
energization of the pressurizer heater. The operator manually tripped the reactor, and the
turbine automatically tripped. Because of pressurizer low pressure, several safety systems
such as safety injection actuation system (SIAS) and the containment isolation actuation
system were actuated. All of charging and safety injection systems restored the pressurizer
level and pressure. An SGTR was suspected, but it could not be diagnosed immediately. The
entry condition of the SGTR procedure was not satisfied, so the operator entered the

 53

functional recovery procedure (FRP). The procedure focused only on the current situation
rather than previous trends, and alarms and indicator alarms for SGTR were also not
presented, making it more confusing for the operator. After the indicator alarm for SGTR,
which was isolated when SIAS was restored, the operator performed the SGTR procedure
and successfully diagnosed defective steam generator and isolated it. Although the power
plant was safely stabilized, there was a slow response due to the operator actions.

To mitigate an SGTR, operator actions are necessary to minimize leakage from the primary system to
the secondary coolant system and to maintain primary coolant subcooling. The operator should identify
the point of leakage within an appropriate time through radiation alarms, diagnose the SGTR, determine
the defective steam generator, and isolate it. Additionally, the operator should take action for RCS
cooling, such as dumping steam. In case of automatic system failure, such as the radiation alarm for
helping to diagnose SGTR or the safety injection system for recovering coolant, the operator should
restore or manually start the system. Furthermore, while safety injection is necessary to recover the
coolant, an operator action to stop the safety injection system is also required later to depressurize for
reducing the break flow. These accidents highlight the critical importance of considering human factors in
nuclear power plant operations.

7.2.2 SGTR PRA Modeling
SGTR is classified as an event where the break flow leaked from the primary to the secondary coolant

exceeds the normal charging flow capacity (U.S. Nuclear Regulatory Commission, 1988). An event tree
for SGTR has been developed by INL and is presented in Figure 43 (Ma et al., 2019). The event tree
consists of an initiating event and 11 event tree headings listed in Table 10, and 22 scenarios are analyzed
based on these headings. The event tree is designed to show how these scenarios can lead to either a
stable state or core damage. The event tree provides a useful tool for analyzing the potential scenarios of
SGTR.

Figure 43. Generic SGTR event tree (from Ma et al., 2019)

 54

Table 10. Event tree headings for SGTR (from Ma et al., 2019)

Heading Description

IE-SGTR Initiating event of steam generator tube rupture

RTS Reactor trip

AFW Supply of the auxiliary Feedwater system to steam generator

HPI Injection of high-pressure safety injection system

SGI Isolation of ruptured steam generator

SSC Cooldown of primary & secondary sides

CSI Termination or Control of high-pressure injection system

FAB Feed and bleed operation

REFILL Refill of refueling water storage tank (RWST)

HPR High pressure recirculation operation

RHR Removal of residual heat

ECA Depressurization of the primary and secondary for decay heat removal/recovery

In the event tree for SGTR, the first scenario leads to a stable state where auxiliary feedwater can be
successfully supplied to the steam generator, HPI is successful, ruptured steam generator is isolated,
primary and secondary sides are cooled down, HPI is terminated, and residual heat is removed (Scenario
1). Even though the residual heat removal fails, it is still possible to lead to a stable state through
successful depressurization of primary and secondary sides and alignment for RHR (i.e., ECA) (Scenario
2). However, if both RHR and ECA fail, it results in core damage (Scenario 3).

If HPI fails to terminate after cooldown, primary and secondary sides cannot be cooled down or the
steam generator cannot be isolated, either RWST refill or ECA is required. If RWST fails to be refilled
with ECA failure, it leads to core damage (scenarios 6, 9, and 12 respectively). However, if either RWST
refill or ECA succeeds, it results in a stable state (scenarios 4 - 5, 7 - 8, 10 - 11).

When auxiliary feedwater is operational but HPI fails to operate, it is necessary to isolate the
defective steam generator, cool down the primary and secondary sides, and remove the residual heat
(Scenario 13). If any of these mitigations fails, it may result in core damage (Scenario 14 - 16). On the
other hand, if auxiliary feedwater fails to operate, it is necessary to operate HPI, isolate the ruptured steam
generator, and perform feed and bleed as well as high pressure recirculation to mitigate the accident
(Scenario 17). If any of these mitigations fails, it may lead to core damage (Scenario 18 - 21). Finally, in
the case where the reactor trip fails, it is analyzed as an anticipated transient without scram (ATWS)
scenario (Scenario 18-22).

Table 11 provides several HFEs considered in SGTR (Ma et al., 2019). In addition to diagnosis of the
SGTR, the operation actions to mitigate the accident include feed and bleed, RHR operation, and control
or termination of safety injection flow. Additionally, the operator’s response is also included when the
automatic system such as the reactor protection system fails. By considering these HFEs, it is possible to
assess the extent to which an operator’s actions may have contributed to the accident or identify any

 55

weakness in the system. This information can be used to improve the design of the system, as well as the
training and procedures, with the aim of the reducing the risk of the accident.

Table 11. Generic human failure events in SGTR

Index Description of Human Failure Events

1 Operators fail to diagnose SGTR and start procedures.

2 Operators fail to respond with reactor protection system signal present.

3 Operators fail to maintain pump suction.

4 Operators fail to control auxiliary feedwater turbine-driven pump after battery depletion; Non-
Station Blackout.

5 Operators fail to initiate feed and bleed cooling.

6 Operators fail to start high pressure recirculation.

7 Operator fails to refill the refueling water storage tank.

8 Operators fail to control/terminate safety injection flow.

9 Operators fail to initiate residual heat removal.

10 Operators fail to recover offsite power in 1 hr.

11 Operators fail to align AC power given non-Loss of offsite power.

12 Operators fail to depressurize RCS/secondary side.

13 Operators fail to depressurize RCS/secondary side (Rapid).

14 Operators fail to implement SGTR procedure ECA 3.1 & 3.2.

7.2.3 EMRALD-HUNTER SGTR
This section describes an SGTR model developed in EMRALD with embedded HUNTER

functionality. Figure 44 (repeated from Figure 13 for purposes of illustrating the current explanation)
shows the EMRALD-HUNTER SGTR model. The model includes eleven states:

1) “Start”

2) “InitiatingEvent”

3) “DiagnoseSGTR”

4) “MitigateSGTR”

5) “HepGTOneFailure”

6) “HumanErrorFailure”

7) “OutofTimeFailure”

 56

8) “OnRepeatFailure”

9) “MultipleFailure”

10) “EventResolved”, and

11) “Terminate.”

Figure 44. The EMRALD-HUNTER SGTR model

The “Start” state indicates the start of simulation in EMRALD-HUNTER. In the “Start” state, the
event “SampleStartTimeOnShift” randomly samples the start time on shift from a time distribution added
by users, then leads to the “InitiatingEvent” state. The start time on shift and overall time on shift
modeled in states are used for estimating values in dynamic PSF calculationa for Fitness for Duty. The
“InitiatingEvent” state declares the start of the SGTR, updates time on shift, then leads to the
“DiagnoseSGTR” state via the two immediate actions modeled in the state. The “DiagnoseSGTR” and
“MitigateSGTR” events are HRAEval events that use HUNTER. These states load the HUNTER
functions for implementing SGTR procedures modeled in HUNTER (see Figure 45 and Figure 46), which
include procedure steps and GOMS-HRA primitives, then simulate human actions relevant to diagnosing
and mitigating the SGTR. These events calculate an elapsed time required to execute a procedure and
have a list of actions. The “HepGTOneFailure”, “ HumanErrorFailure”, “OutofTimeFailure”,
“OnRepeatFailure”, “MultipleFailure”, and “Success” actions represent different outcomes from the
HUNTER simulation. Recall these outcomes from Section 5.2. A brief explanation on each state is
repeated below:

• “HepGTOneFailure”—An HEP is equal to or greater than 1.0 as a result of HUNTER simulation
and cannot be completed

• “HumanErrorFailure”—An HEP less than 1.0 was calculated, but the tasked failed due to chance

• “OutofTimeFailure”—Human actions are not completed within the time window

 57

• “OnRepeatFailure”—An HEP less than 1.0 was calculated and the task was repeated up to the
MaxRepeat count but failed due to chance.

• “MultipleFailure”—More than one failure type occurs.

• “Success”—The success of diagnosis and mitigation of SGTR.

In the EMRALD model each of these actions point to a key state followed by “Terminate” which
ends the simulation run.

Figure 45. Procedure contents coded for diagnosing SGTR within EMRALD-HUNTER

 58

Figure 46. The procedure contents coded for mitigating SGTR within EMRALD-HUNTER

 59

Figure 47 shows an example of simulation result of EMRALD-HUNTER SGTR model. All the runs
discussed had a sampled starting time on shift with a mean of 4 hours and a standard deviation of 2 hours.
With 1,000 trials, 962 cases (i.e., “EventResolved”) were successfully mitigated from SGTR, while 12
cases resulted in failed scenarios (i.e., “OnRepeatFailure”) and 26 cases of overtime-based failure
scenarios (i.e., “OutOfTimeFailure”) were observed. The failed scenarios refer to the failure cases caused
by failure of GOMS-HRA primitive, while the overtime-based failure scenarios mean the failure cases
that human actions are not finished within the time window.

Figure 47. An example simulation result of the EMRALD-HUNTER SGTR model

Table 12 summarizes the simulation outputs of the EMRALD-HUNTER SGTR model depending on
stress and time pressure. The stress levels are used as inputs for the dynamic Stress PSF evaluation for the
HEP, while Time Pressure affects the time calculation only. In the table, there are three major outputs
from the model, i.e., the number of failed scenarios, HEPs, and overtime failure counts. HEPs are
calculated by dividing the number of failed scenarios by the number of scenarios (i.e., the number of
trials). For the number of failed scenarios and HEPs, these values increase for higher stress level. In
contrast, the overtime failure counts increase much less than the number of failed scenarios and HEPs
depending on the higher stress level. Regarding Time Pressure, it is mainly relevant to the elapsed time.
Figure 48 shows the average elapsed time on Stress and Time Pressure across SGTR scenarios. The figure
indicates that the Time Pressure option dominates elapsed time, while the Stress level affects it less. In
Table 12, if the Time Pressure option is applied in the simulation, overtime failure results in a relatively

 60

low value. The reduced elapsed time Time Pressure prevents errors due to overtime. On the other hand, if
Time Pressure is not applied, the overtime failure count increases.

Table 12. Simulation outputs of the EMRALD-HUNTER SGTR model for stress and time pressure

Stress
Time

Pressure
The Number of
Failed Scenarios

HEPs (The Number of
Failed Scenarios / The
Number of Scenarios)

Overtime Failure
Count

Nominal Yes 38 3.800e-2 26

No 322 3.220e-1 321

High Yes 162 1.620e-1 28

No 382 3.820e-1 335

Extreme Yes 403 4.030e-1 32

No 512 5.120e-1 512

Figure 48. The elapsed time on stress level and time pressure in the SGTR scenarios

7.3 Loss of Feedwater (LOFW) Scenario
7.3.1 LOFW Description

In a PWR, the feedwater of the secondary side plays an essential role in producing electricity. The
feedwater receives heat from the primary side to produce steam that drives the generator. It is also
important to ensure that the feedwater on the secondary side is available for decay heat removal after the
reactor shuts down. However, failure to supply the feedwater can reduce heat transfer to the secondary

 61

side from serving as a heat sink, which can lead to increased pressure and temperature of the RCS. Thus,
the reactor is eventually tripped with the reactor high pressure or steam generator low level. To address
this issue, most PWRs are equipped with an auxiliary feedwater system. An accident resulting from the
failure to supply feedwater to the steam generator is known as loss of feedwater, which is one of the
design basis accidents (DBA).

In 1985, Davis-Besse Nuclear Power Plant experienced an actual LOFW accident at 90% operating
power (U.S. Nuclear Regulatory Commission, 1985). At the time, one of two main feedwater pumps was
in automatic control, and the other was in manual control. However, the automatic control pump stopped
due to overspeed, leaving only the manually controlled pump operational. Furthermore, due to a spurious
closure of the main steam isolation valve (MSIV), the turbine-driven main feedwater pump was unable to
receive steam supply, rendering the redundant pump unusable as well. As a result, the plant experienced a
loss of main feedwater.

Upon detecting a reduction in the steam generator water level, the operator expected the auxiliary
feedwater supply system to automatically activate. However, the operator manually operated it before the
steam generator low-level setpoint was reached. Unfortunately, during this process, the operator
mistakenly pressed the valve to isolate the auxiliary feedwater supply system. As a result, the auxiliary
feedwater pumps also stopped due to overspeed, leading to a total loss of feedwater. In general, it was
advisable to initiate automatic actuation manually when failure is imminent, but this case shows the
occurrence of operator errors cannot be ignored. Such errors may result from a lack of understanding of
the plant’s state or mistakes in performance.

In the event of a potential boil dry situation caused by the LOFW, it was critical for the operator to
quickly activate the auxiliary feedwater system. Fortunately, the operator responded promptly by resetting
the control system and correcting the earlier error. However, the auxiliary feedwater valve that should
have automatically reopened failed to open. Despite attempting to operate it manually from the main
control panel, the valve remained unresponsive. At this critical juncture, the operator made the crucial
decision to activate the startup feed pump. As it is motor-driven pump that does not require steam from
the steam generator, it is a more reliable system for supplying feedwater. By supplying feedwater through
the startup feed pump, the plant’s condition was stabilized.

The operator was supposed to perform feed and bleed operation according to procedure. However, the
operator deviated from the procedure by recovering the auxiliary feedwater system instead of performing
feed and bleed. Although the operator should have followed the procedure, it was later confirmed this
approach may be more cost-effective. Furthermore, as the pressure increased due to the reactor coolant
system overheating and steam generator boiling dry, the pressurizer pilot operated relief valve (PORV)
opened and closed twice without the operator’s knowledge. The PORV did not close completely, resulting
in a section where the pressure rapidly decreased, which the operator failed to notice. Fortunately, the
PORV was eventually closed properly, and no further problems occurred. Nevertheless, the operator's
lack of awareness could have been a significant contributing factor to the incident. It was evident that
several operator actions are necessary in the LOFW, highlighting the role of human factors.

Similarly, the well-known Three Mile Island (TMI) accident was also triggered by LOFW, which led
to loss of coolant Accident (LOCA) with a series of related complex events (U.S. Nuclear Regulatory
Commission, 2022). The failure of both the main and auxiliary feedwater systems prevented the
secondary side from being cooled, leading to automatic tripping of the turbine generator and the reactor,
making heat removal difficult and increasing pressure in the primary system. In this case, the stuck open
PORV caused the LOCA accident. These incidents also demonstrate the critical importance of
understanding and addressing the role of operators in NPP events.

 62

Figure 49. Generic LOFW event tree (from Ma et al., 2019)

Table 13. Event tree headings for LOFW (from Ma et al., 2019)

Heading Description

IE-LOFW Initiating event of loss of feedwater

RTS Reactor trip

AFW Supply of the auxiliary Feedwater system to steam generator

PORV Close of pressurizer pilot operated relief valve (PORV)s

LOSC Maintain of reactor coolant pump seal cooling

HPI Injection of high-pressure safety injection system

FAB Feed and bleed operation

SSCR Recover of secondary side cooling

SSC Cooldown of primary & secondary sides

RHR Removal of residual heat

HPR High pressure recirculation operation

 63

7.3.2 LOFW PRA Modeling
Figure 49 depicts the event tree for LOFW (Ma et al., 2019). The event tree comprises the initiating

event and 10 event tree headings as shown in Table 13, and 13 sequences are analyzed based on these
headings. The event tree illustrates how these scenarios can lead to either a stable state or core damage.
Table 14 provides several HFEs considered in LOFW.

Table 14. Generic human failure events in LOFW

Index Description of Human Failure Events

1 Operators fail to respond with RPS signal present.

2 Operators fail to manually initiate AFW.

3 Operators fail to trip reactor coolant pumps.

4 Operators fail to depressurize RCS/secondary side (Rapid).

5 Operators fail to initiate emergency boration.

6 Operators fail to initiate feed and bleed cooling.

7 Operators fail to initiate feed and bleed cooling (Depend).

8 Operators fail to start high pressure recirculation.

9 Operators fail to restore HTX 1A after test or maintenance.

10 Operators fail to restore HTX 1B after test or maintenance.

11 Operators fail to restore train P1A after test or maintenance.

12 Operators fail to restore train P1B after test or maintenance.

13 Operators fail to recover offsite power in 1 hr.

14 Operators fail to align AC power given non-loss of offsite power LOOP IE.

15
Operators fail to control AFW turbine-driven pump (TDP) after battery depletion; Non-station
blackout (SBO).

The first scenario of the event tree is defined as a stable state where AFW can be successfully
supplied to the steam generator, the PORVs are properly closed, and the reactor coolant pumps (RCPs)
seal cooling is maintained after reactor trip (Scenario 1). Scenario 2 defines a situation where the PORVs
are properly closed, but RCP seal cooling fails, leading to a LOCA. Scenarios 3 - 8 require high-pressure
injection (HPI) due to an improperly open PORV and possible coolant leakage. If HPI fails, coolant
leakage continues, resulting in core damage (scenario 8). If HPI is successful, the plant's stability depends
on whether the primary and secondary side cooling systems can be successfully cooled down. If
cooldown fails, but high-pressure recirculation (HPR) is successful, the plant may be stable (scenario 6).
If HPR fails, the plant is defined as core damaged (scenario 7). If either the primary or secondary side
cooldown is successful, with or without residual heat removal, the plant is considered stable (scenarios 3
and 4).

 64

In the event of LOFW, if the AFW system fails to supply feedwater, heat removal can still be
achieved through feed and bleed operation. After successful feed and bleed operation, if neither secondary
side cooling recovers and HPR fails, the plant is deemed core damaged (scenario 11). If either one
succeeds, the plant is defined as stable state (scenarios 9 and 10). If the feed and bleed operation also
fails, it results in core damage (scenario 12). In case the reactor trip fails, it is analyzed as at ATWS
scenario.

Figure 50. The EMRALD-HUNTER LOFW model

Figure 51. The procedure contents coded for diagnosing LOFW within EMRALD-HUNTER

 65

7.3.3 EMRALD-HUNTER LOFW Model
This section introduces a LOFW model developed under EMRALD-HUNTER. Figure 50 (repeated

from Figure 12) shows the EMRALD-HUNTER LOFW model. The diagram follows a similar scheme to
the SGTR scenario described in Section 7.2.2. In the simulation for LOFW model, the file depicted in
Figure 51 is used to define the human actions for each step for diagnosing LOFW, while the rapid
shutdown process similar to SGTR and represented earlier in Figure 46 is carried out to mitigate the
LOFW.

Table 15 summarizes the simulation outputs of the EMRALD-HUNTER LOFW model depending on
stress and time pressure. Figure 52 indicates the average elapsed time on stress and time pressure in
LOFW scenarios. These show similar tendencies in the outputs depending on the Stress level and Time
Pressure option.

Table 15. The simulation outputs of the EMRALD-HUNTER LOFW model depending on stress and time
pressure

Stress Time Pressure The Number of
Failed Scenarios

HEPs (The
Number of

Failed Scenarios
/ The Number of

Scenarios)

Overtime Failure
Count

Nominal Yes 11 1.100e-2 8

No 192 1.920e-1 192

High Yes 73 7.300e-2 6

No 227 2.270e-1 216

Extreme Yes 272 2.720e-1 5

No 346 3.460e-1 244

Figure 52. The elapsed time on stress level and time pressure in LOFW scenarios

 66

8. DISCUSSION
This report has captured the coupling of EMRALD and HUNTER, providing an embedded tool for

HRA to be used with dynamic PRA in EMRALD. The embedded version of HUNTER demonstrated the
ability to simplify key features of HUNTER such as decision logic in the Task module or the linked plant
model in the Environment module to allow it to function within the dynamic event scheduling provided
by EMRALD. HUNTER embedded within HUNTER was able to use the existing interface in EMRALD
with only minor additions, making HUNTER a seamlessly integrated addition to EMRALD.

This report demonstrated the utility of EMRALD-HUNTER with two accident scenarios, SGTR and
LOFW, which had previously also been run with the standalone version of HUNTER. The Monte Carlo
runs in EMRALD readily produced HEPs and task durations. These can be compared to the results from
the International HRA Empirical Study, published as several volumes of NUREG/IA-0216. NUREG/IA-
0216, Volume 2 (Bye et al., 2011) reviews the results from a large-scale simulator study for SGTR. The
scenarios for diagnosing and mitigating the SGTR in EMRALD-HUNTER correspond to HFE-1A and
HFE-2A as presented in Figure 53. The predicted HEPs from EMRALD-HUNTER for nominal Stress
levels are shown as an orange rectangle and fall within the confidence bounds for the empirical data.
These data suggest that EMRALD-HUNTER does a good job of predicting the HEPs within the modeled
scenarios for SGTR. Note that NUREG/IA-0216 does not break down task durations in a way that allows
comparison between the empirical data and the predicted times from EMRALD-HUNTER.

Figure 53. Empirical data for HEPs for SGTR overlaid with predicted HEPs from EMRALD-HUNTER

NUREG/IA-0216 Vol. 2

5-4

Figure 5-3. Bayesian confidence bounds of the empirical HEPs vs all predicted HEPs

As can be seen from the plot, many methods underestimated the HEPs for the most difficult
HFEs (5B1 and 1B). This seems to be fairly systematic, and, in the following chapter,
reasons for this are discussed for each of the methods. For the rest of the HFEs, nearly all
predictions (mean values) fall within the Bayesian bounds. However, these bounds are very
broad.

Figure 5-3 also shows the limitations of the empirical HEPs for comparison with predicted
HEPs. The detailed qualitative analysis suggests that these empirical distributions (which are
based solely on the failure counts in number of runs) are not as informative as the difficulty
ranking. As stated in Section 0, the difficulty ranking was:

5B1 > 1B > 3B > 3A > [1A, 2A, 2B] > 5B2 > 4A (from difficult to easy)

1A, 2A, and 2B were considered equally difficult. This is in contrast to the empirical HEPs, in
which 2B, 5B2, and 4A were all zero failure cases. In HFE 5B2, only 7 crews participated, in
contrast to the 14 crews in the other HFEs.

Overall, the qualitative findings (identification of issues, driving factors, etc.) are weighed
more heavily in the evaluation than the quantitative performance.

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

5B1 1B 3B 3A 1A 2A 2B 5B2 4A
HFEs - SGTR Scenarios, by decreasing difficulty per simulator data

Pr
ed

ic
te

d
H

EP
s

(m
ea

ns
)

95th %ile

5th %ile

! confidence bounds of
empirical HEPs

 67

Figure 54. Empirical data for HEPs for SGTR overlaid with predicted HEPs from EMRALD-HUNTER

NUREG/IA-0216, Volume 3 (Dang et al., 2012) reports of the results of a related simulator study for
LOFW. The scenarios modeled in EMRALD-HUNTER correspond to HFE-1A and HFE-2A shown in
Figure 54. Due to a data constraint, the confidence bounds could not be determined for HFE-2A in
NUREG/IA-0216, Volume 3. Nonetheless, as can be seen by the orange box in the figure, the predicted
HEPs for LOFW with nominal Stress fall within the observed levels from the empirical data. The data
suggest that EMRALD-HUNTER accurately predicts HEPs within the modeled scenarios for LOFW.

While HUNTER provides new HRA functions to support EMRALD modeling, it must be noted that
the embedded HUNTER represents a simplified variant of HUNTER. Development of the standalone
version of HUNTER will continue to serve modeling efforts that:

• Involve more realistic human performance modeling at the subtask level than is provided in the
embedded version of HUNTER

• Have a considerable number of procedures that would benefit from the procedure authoring tools
in the full version of HUNTER

• Consider the effects of deviations between work as imagined and work as done in procedure
following

• Require complex branching logic in procedures beyond what is supported in EMRALD-
HUNTER

47

P
re

di
ct

ed
 F

ai
lu

re
 P

ro
ba

bi
lit

ie
s

(m
ea

ns
)

1.E+0

95th %ile

 confidence
bounds of

empirical HEPs

1.E-1

1.E-2

1.E-3
5th %ile

1.E-4
1B 2B 1A 2A 1B1 1A1

LOFW HFEs, by decreasing difficulty per simulator data

Figure 5-3 Bayesian confidence bounds of the empirical HEPs vs. all predicted

HEPs

As can be seen from the plot, many methods underestimated the HEP for the most difficult
HFE 1B. This seems to be fairly systematic, and, in the following section, reasons for this
are discussed for each of the methods. Nevertheless, it should be noted that the majority of
the predictions were above 0.1, consistent with a high expectation of failure.

At the same time, many methods overestimated the HEP for 2B. This is mainly due to the
modelling of dependency, as discussed for each of the methods in the Section 6
assessments, as well as in Section 7.2. For HFE 1A, most of the methods had reasonable
HEPs. There is no data for 2A (the conditional HFE), since all crews succeeded in 1A.

The joint HFEs, 1A1 and 1B1, were not used as extensively in the comparisons. The
simulator observations, interpreted as failure counts for the joint HFEs, result in zero failures
in ten observations for both joint HFEs. The corresponding confidence bounds for 1A1 and
1B1 would be the same as for HFE 1A, that is, broad and therefore limited in providing
insights, except to suggest some pessimism (if the method produces a mean value above
the 95th percentile value of 0.17 for these joint HFEs). Secondly, the empirical bounds for
these HFEs do not discriminate between 1A1 and 1B1. On the other hand, the difficulty of
1B1 relative to 1A1, considering when B&F is implemented relative to the procedural criteria
and qualitative considerations, is unambiguous.

Overall, the qualitative findings (identification of issues, driving factors, etc.) are weighed
more heavily in the evaluation than the quantitative performance.

 68

• Benefit from additional PSFs and modeling of additional effects of PSFs beyond task duration
and HEPs

• Use more frequently added new features including exploratory modeling aspects of HRA

• Need an included plant simulation for modeling plant phenomena.

At the same time, the embedded version of HUNTER affords numerous advantages, especially when
looking for a streamlined version of HRA to add to dynamic PRA. The two versions of HUNTER can
readily co-exist. Figure 55 provides a comparison table to assist in understanding when EMRALD-
HUNTER vs. standalone HUNTER might be most appropriate.

Use EMRALD-HUNTER Use standalone HUNTER

• When you wish to add HRA to EMRALD
models

• When you are analyzing human actions at
the HFE level

• When you are primarily interested in task
duration and error for human actions

• When you want to use external libraries
and features linked to EMRALD

• When you are exploring psychological
phenomena behind human actions

• When you are analyzing human actions at
the task or subtask level

• When you are interested in performance
measures beyond task duration and error

• When you are developing human event
sequences for later use in EMRALD

• When you are analyzing and optimizing
procedures for human event sequences

Figure 55. Guidance on when to use EMRALD-HUNTER vs. the standalone version of HUNTER

This report chronicles initial features of HUNTER embedded into EMRALD and the successful
demonstration of EMRALD-HUNTER. Additional testing and demonstration of EMRALD-HUNTER is
planned beyond the SGTR and LOFW scenarios presented in this report. For example, significant
modeling work has already been done using EMRALD for HRA modeling with FLEX emergency
mitigation (Park et al., 2021) and physical security (Christian et al., 2023). The integration of HUNTER
into EMRALD is informed by these earlier efforts and the challenges that were incurred in modeling
HRA efficiently without a specific HRA module in EMRALD. Revisiting earlier analyses with the
embedded HUNTER functionality would be a good place to see the benefits of the new approach. As
additional use cases and demonstrations are explored, the development team represented in this report
will consider desirable new features to incorporate into future versions of EMRALD-HUNTER.

 69

9. REFERENCES

Ashour, A., Ashcroft, D. M., & Phiipps, D. L. (2021). Mind the gap: Examining work-as-imagined
and work-as-done when dispensing medication in the community pharmacy setting. Applied Ergonomics,
93, Article 103372.

Belenky, G. (1994). The Effects of Sleep Deprivation on Performance During Continuous Combat
Operations. In Institute of Medicine (Ed.), Food Components to Enhance Performance: An Evaluation of
Potential Performance-Enhancing Food Components for Operational Rations (pp. 127-136). The National
Academies Press.

Boring, R. (2010). How many performance shaping factors are necessary for human reliability
analysis. In Proceedings of the 10th International Probabilistic Safety Assessment and Management
Conference.

Boring, R.L. (2015). A dynamic approach to modeling dependence between human failure events.
Proceedings of the 2015 European Safety and Reliability (ESREL) Conference (pp. 2845-2851).

Boring, R.L. (2020). The first decade of the Human Systems Simulation Laboratory: A brief history
of human factors research in support of nuclear power plants. Advances in Artificial Intelligence,
Software and Systems Engineering, 1213, 528-535.

Boring, R.L., & Blackman, H.S. (2007). The origins of the SPAR-H method’s performance shaping
factor multipliers. Official Proceedings of the Joint 8th IEEE Conference on Human Factors and Power
Plants and the 13th Annual Workshop on Human Performance/Root Cause/Trending/Operating
Experience/Self-Assessment (pp. 177-184).

Boring, R., Lew, R., Ulrich, T., & Park, J. (2023, in press). Synchronous vs. asynchronous coupling
the HUNTER dynamic human reliability analysis framework. Proceedings of Applied Human Factors and
Ergonomics (AHFE) 2023.

Boring, R.L., & Rasmussen, M. (2016). GOMS-HRA: A method for treating subtasks in dynamic
human reliability analysis. Proceedings of the European Safety and Reliability Conference (pp. 956-963).

Boring, R., Rasmussen, M., Smith, C., Mandelli, D., & Ewing, S. (2017). Dynamicizing the SPAR-H
method: A simplified approach to computation-based human reliability analysis. Proceedings of the 2017
Probabilistic Safety Assessment Conference (pp. 1024-1031).

Boring, R., Ulrich, T., Mortenson, T., & Gertman, D. (2020). Fatigue as a performance shaping factor
in human reliability analysis for long-duration spaceflight. Proceedings of the 64th International Annual
Meeting of the Human Factors and Ergonomics Society (pp. 1681-1685).

 70

Boring, R.L., Ulrich, T.A., Ahn, J., Heo, Y., & Park, J. (2022). Software Implementation and
Demonstration of the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER)
(INL/RPT-22-66564). Idaho National Laboratory.

Boring, R.L., Ulrich, T.A., & Rasmussen, M. (2018). Task level errors for human error prediction in
GOMS-HRA. Proceedings of the European Safety and Reliability Conference (pp. 433-439).

Bye, A., Lois, E., Dang, V.N., Parry, G., Forester, J., Massaiu, S., Boring, R., Braarud, P.Ø., Broberg,
H., Julius, J., Männistö, I., Nelson, P. (2011). International HRA Empirical Study—Phase 2 Report:
Results from Comparing HRA Method Predictions to Simulator Data from SGTR Scenarios
(NUREG/IA-0216, Vol. 2). U.S. Nuclear Regulatory Commission.

Campbell, R.D., & Bagshaw, M. (2002). Human Performance and Limitation in Aviation (3rd ed.).
Blackwell Science.

Choi, Y.-J. (2020). Assessment of verification and validation status—EMRALD and HUNTER
(INL/EXT-20-59904). Idaho National Laboratory.

Christian, R., Yadav, V., Prescott, S.R., & St Germain, S.W. (2022). A dynamic risk framework for
the optimization of physical security posture of nuclear power plants. Proceedings of the Probabilistic
Safety Assessment and Management Conference (PSAM 16), Paper RO316.

Cowan, N. (2008). What are the differences between long-term, short-term, and working memory?
Progress in Brain Research, 169.

Curry, L., & Gass, D. (1987). Effects of training in cardiopulmonary resuscitation on competence and
patient outcome. Canadian Medical Association Journal, 137.

Dang, V.N., Forester, J., Boring, R., Broberg, H., Sassaiu, S., Julius, J., Männistö, I., Nelson, P., Lois,
E., and Bye, A. (2012). International HRA Empirical Study—Phase 3 Report—Results from Comparing
HRA Method Predictions to Simulator Data on LOFW Scenarios (NUREG/IA-0216, Vol. 3). U.S.
Nuclear Regulatory Commission.

Dhillon, B. S. (2007). Human Reliability and Error in Transportation Systems. Springer London.

Dorin, R.I., Qiao, Z., Qualls, C.R., & Urban III, F.K. (2012). Estimation of maximal cortisol secretion
rate in healthy humans. The Journal of Clinical Endocrinology & Metabolism, 97(4), 1285-1293.

 71

Folkard, S. (1997). Black times: Temporal determinants of transport safety. Accident Analysis &
Prevention, 29(4), 417-430.

Gertman, D., Blackman, H., Marble, J., Byers, J., & Smith, C. (2005). The SPAR-H Human
Reliability Analysis Method (NUREG/CR-6883). U.S. Nuclear Regulatory Commission.

Groth, K., & Mosleh, A. (2009). A Data-informed Model of Performance Shaping Factors for Use in
Human Reliability Analysis. Center for Risk and Reliability, University of Maryland, College Park.

Heitz, R.P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior.
Frontiers in Neuroscience, 8, Article 150.

Hollnagel, E. (1998). Cognitive Reliability and Error Analysis Method (CREAM). Elsevier.

Jaber, M.Y., & Sikstrom, S. (2004). A numerical comparison of three potential learning and
forgetting models. International Journal of Production Economics, 92.

Joe, J.C., Boring, R.L., Herberger, S., Miyake, T., Mandelli, D., & Smith, C. L. (2015). Proof-of-
Concept Demonstrations for Computation-Based Human Reliability Analysis: Modeling Operator
Performance During Flooding Scenarios (INL/EXT-15-36741). Idaho National Laboratory.

Jung, W., Kim, J., Park, J., Jeoung, K., Kang, D., & Ha, J. (2005). Development of a Standard Human
Reliability Analysis Method of Nuclear Power Plants (KAERI/TR-2961/2005). Korea Atomic Energy
Research Institute.

Kim, J.T., Kim, J., Seong, P.H., & Park, J. (2021). Quantitative resilience evaluation on recovery
from emergency situations in nuclear power plants. Annals of Nuclear Energy, 156, Article 108220.

Kim, T.Y., Park, J., Boring, R.L., & Kim, J. (2023). An experimental investigation of students’
learning effects when using a simplified nuclear simulator. Proceedings of the 13th Nuclear Plant
Instrumentation, Control & Human-Machine Interface Technologies (NPIC&HMIT 2023).

Kolaczkowski, A., Forester, J., Lois, E., & Cooper, S. (2005). Good Practices for Implementing
Human Reliability Analysis (NUREG-1792). U.S. Nuclear Regulatory Commission.

Ma, Z, Parisi, C., Davis, C., Boring, R.L., Zhang, H., & Park, J. (2019). Risk-Informed Analysis for
an Enhanced Resilient PWR with ATF, FLEX, and Passive Cooling (INL/EXT-19-53556). Idaho
National Laboratory.

 72

MacDonald, P.E., Shah, V.N., Ward, L.W, & Elliosn, P.G. (1996). Steam Generator Tube Failures
(NUREG/CR-6365). U.S. Nuclear Regulatory Commission.

Manurung, A.D.R., Shanti, I., & Mardhatillah, A. (2022). In flight emergency decision-making
process: Does Intuition Matter? Acta Medica Philippina, 56.

Murre, J.M.J., & Dros, J.D. (2015). Replication and analysis of Ebbinghaus’s forgetting curve. PLOS
ONE.

Park, J., Boring, R.L., & Kim, J. (2019). An identification of PSF lag and linger effects for dynamic
human reliability analysis: Application of experimental data. 12th International Conference on Human
System Interaction (pp. 12-16).

Park, B., Lee, S., Yang, T., Choi, J. H., Park, J., Arigi, A., Boring, R. L., & Kim, J. (2021). An
experimental analysis on the CNS simulator comparing human performance between operators and
students. In Korean Nuclear Society Virtual Autumn Meeting.

Park, J., Ulrich, T.A., Boring, R.L., Zhang, S., Ma, Z., & Zhang, H. (2021). Modeling FLEX human
actions using the EMRALD dynamic risk assessment tool. In International Topical Meeting on
Probabilistic Safety Assessment and Analysis (PSA 2021) (pp. 1171-1180).

Park, J., Yang, T., Boring, R.L., Ulrich, T.A., & Kim, J. (2023). Analysis of human performance
differences between students and operators when using the Rancor Microworld Simulator. Annals of
Nuclear Energy, 180, Article 109502.

Prescott, S., Nevius, D., Ma, Z., & Lawrence, S. (2022). Using EMRALD to Simplify and Perform
Dynamic Analysis with MAAP. PSAM 16, Honolulu, Hawaii, June 26 - July 1, 2022.

Prescott, S., Smith, C., & Vang, L. (2018). EMRALD, Dynamic PRA for the Traditional Modeler.
PSAM 14, Los Angeles, CA, Sep. 2018.

Prescott, S., Wood, T., & Ziccarelli, M.. (2022). Dynamic and Classical PRA Coupling Using
EMRALD and SAPHIRE (INL/RPT-22-70424). Idaho National Laboratory.

Rasmussen, M., & Boring, R. L. (2016). Implementation of complexity in computation-based human
reliability analysis. Proceedings of the European Safety and Reliability Conference (pp. 972-977).

Sezen, H., Hur, J., Smith, C., Aldemir, T., & Denning, R. (2019). A computational risk assessment
approach to the integration of seismic flooding hazards with internal hazards. Nuclear Engineering and
Design, 355, Paper 110341.

 73

Spencer, M., Robertson, K., & Folkard, S. (2006). The Development of a Fatigue/Risk Index for Shift
Workers. Health and Safety Executive Report, 446.

Swain, A. D. (1987). Accident Sequence Evaluation Program Human Reliability Analysis Procedure
(NUREG/CR-4772). U.S Nuclear Regulatory Commission.

Swain, A.D., & Guttmann, H.E. (1983). Handbook of Human Reliability Analysis with Emphasis on
Nuclear Power Plant Applications (NUREG/CR-1278). U.S Nuclear Regulatory Commission.

Swaton, E., Neboyan, V., & Lederman, L. (1987). Human factors in the operation of nuclear power
plants. IAEA Bulletin.

Ulrich, T., Boring, R.L., Ewing, S., & Rasmussen, M. (2017). Operator timing of task level primitives
for use in computation-based human reliability analysis. Advances in Intelligent Systems and Computing,
589, 41-49.

Ulrich, T. A., Lew, R., Werner, S., & Boring, R. L. (2017). Rancor: A Gamified Microworld Nuclear
Power Plant Simulation for Engineering Psychology Research and Process Control Applications.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 61, 398-402.

U.S. Nuclear Regulatory Commission. (1985). Loss of Main and Auxiliary Feedwater Event at the
Davis-Besse Plant on June 9, 1985 (NUREG-1154). U.S. Nuclear Regulatory Commission.

U.S. Nuclear Regulatory Commission. (1988). NRC Integrated Program for the Resolution of
Unresolved Safety Issues A-3, A-4, and A-5 Regarding Steam Generator Tube Integrity, Final Report
(NUREG-0844). U.S. Nuclear Regulatory Commission.

U.S. Nuclear Regulatory Commission. (2022). Backgrounder on the Three Mile Island Accident. Fact
Sheet.

Vitousek, M.N., Taff, C.C., Ardia, D.R., Stedman, J.M., Zimmer, C., Salzman, T.C., & Winkler,
D.W. (2018). The lingering impact of stress: Brief acute glucocorticoid exposure has sustained, dose
dependent effects on reproduction. Proceedings of the Royal Society B: Biological Sciences, 285(1882),
20180722.

White, K.G. (2001). Forgetting functions. Animal Learning & Behavior, 29.

Wixted, J.T., & Ebbensen, E.B. (1991). On the form of forgetting. Psychological Science, 2

