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ABSTRACT 
 

This report presents the integration of two dynamic risk tools recently developed under the U.S. 
Department of Energy’s Light Water Reactor Sustainability Program. Event Modeling Risk Assessment 
using Linked Diagrams (EMRALD) is a software package for modeling and running dynamic 
probabilistic risk assessment. Human Unimodel for Nuclear Technology to Enhance Reliability 
(HUNTER) is a software tool for dynamically modeling human reliability analysis. These two software 
tools have been integrated as EMRALD-HUNTER to allow streamlined risk modeling of both plant 
system and human operator reliability. Select features of HUNTER have been embedded in EMRALD to 
facilitate better incorporation of human reliability analysis in dynamic probabilistic risk assessment 
models. The integration represents one of the first software-based efforts to reconcile dynamic human 
reliability analysis with probabilistic risk assessment models. Challenges and implementation solutions 
encountered while developing the integration of the software are included through two demonstration 
scenarios of the integrated tools: steam generator tube rupture and loss of feedwater events. The 
EMRALD-HUNTER demonstration scenarios successfully benchmarked against previous HUNTER runs 
and against empirical data from simulator studies. This report concludes with selection criteria for when 
to use EMRALD-HUNTER and when to use the standalone version of HUNTER.  
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EMRALD-HUNTER: AN EMBEDDED DYNAMIC HUMAN 
RELIABILITY ANALYSIS MODULE FOR 
PROBABILISTIC RISK ASSESSMENT  

1. INTRODUCTION 
Under the United States (U.S.) Department of Energy’s (DOE) Light Water Reactor Sustainability 

(LWRS) Program, the Risk-Informed Systems Analysis (RISA) pathway has funded ongoing research 
and development activities in support of dynamic risk assessment methods. Legacy risk assessment 
methods are widely used in the nuclear industry and help ensure the overall safety and reliability of the 
U.S. commercial operating fleet of nuclear power plants (NPPs). However, these methods are largely 
static approaches to risk, meaning they operate on a fixed set of plant and operational conditions. 
Dynamic risk assessment uses Monte Carlo techniques to explore a wider range of outcomes, enabling 
what-if modeling. The approach is fundamentally different from static risk, since dynamic risk models 
component relationships and possible values. Randomized samples of model values through the Monte 
Carlo technique reveal emergent outcomes that could otherwise be challenging to foresee. Such modeling 
is especially important in the context of plant upgrades, novel plant operation strategies (e.g., use of new 
mitigating strategies to cope with beyond design bases events [BDBEs]), and advanced reactors, where 
there is not yet a large base of operating experience to understand system interdependencies or new 
operational contexts. The shift from risk for as-built systems to new systems provides the perfect basis for 
ensuring that risk assessment tools can be used to ensure the safety of these new systems. The purpose of 
developing dynamic risk assessment tools is to ensure the completeness and accuracy of modeling for 
new systems while also achieving efficiencies for the analysts. 

Two recent tools have been developed under RISA to support emerging needs for dynamic risk 
assessment: 

• Event Modeling Risk Assessment using Linked Diagrams (EMRALD; Prescott, Smith, and 
Vang) is a dynamic probabilistic risk assessment (PRA) software tool to help model causes 
and mitigations for hardware failures. 

• Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER; Boring et al., 
2022) is a dynamic human reliability analysis (HRA) software tool to help model operator 
performance including human errors. 

Both of these tools were recently programmatically reviewed in LWRS for their deployment 
readiness, and both tools were recommended for further development to better support industry risk 
assessment needs (Choi, 2020). Since the time of the review, both EMRALD and HUNTER have 
undertaken significant activities to make them more useful for industry applications. For example, 
ERMALD has recently been coupled to the widely used static PRA event and fault tree modeling 
software called Systems Analysis Programs of Hands-on Integrated Reliability Evaluations (SAPHIRE), 
which allows EMRALD to more readily interface with existing plant PRA models (Prescott, Wood, and 
Ziccarelli, 2022). HUNTER has evolved from a collection of disparate dynamic HRA models into a 
standalone, integrated software tool (Boring et al., 2022) that also includes an embedded plant simulation 
to facilitate accurate human-technology interactions (Lew et al., 2022). 

The purpose of the research effort captured in this report is to integrate these dynamic PRA and HRA 
tools to enable both human and plant risk modeling in a single tool. Such a tool would benefit analysts by 
providing a one-stop tool to cover hardware and operational risk. This report presents the integration of 
HUNTER within EMRALD to create EMRALD-HUNTER. The decision to embed HUNTER was based 
on the existing wider user base for PRA who would benefit from the addition of greater HRA 
functionality into PRA modeling tools like EMRALD. HUNTER will continue to exist as a standalone 
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tool for more detailed HRA and human performance efforts, but a streamlined version of HUNTER for 
general HRA applications has been embedded in the EMRALD code. This streamlined version of 
HUNTER aims to provide a limited subset of functionality that is within a reasonable expectation of 
knowledge and expertise for existing probabilistic risk analysts. The intent is the analyst is not required to 
contend with the bulk of nuances of dynamic HRA models and instead can select from a suite of prebuilt 
procedures to represent human failure events in their model. This suite of models was created and can be 
refined by human reliability analysts as needed using the standalone HUNTER software. 

This report overviews the development considerations and provides proof-of-concept demonstrations 
of EMRALD-HUNTER for two scenarios. The report is structured as follows: 

• Chapter 1 (this chapter)—introduces the integration of EMRALD and HUNTER 

• Chapter 2—provides background on the standalone version of HUNTER 

• Chapter 3—explains the existing EMRALD implementation 

• Chapter 4—provides a detailed rationale for integrating EMRALD and HUNTER 

• Chapter 5—describes the software architecture and implementation details for EMRALD-
HUNTER 

• Chapter 6—overviews the treatment of dynamic performance shaping factors in EMRALD-
HUNTER 

• Chapter 7—provides sample analyses for steam generator tube rupture and loss of feedwater 
events 

• Chapter 8—concludes the report with a comparison of the sample analyses to available 
empirical data and provides brief selection guidance for when to use EMRALD-HUNTER vs. 
standalone HUNTER. 
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2. INTRODUCTION TO HUNTER 
2.1 What is HUNTER? 

HUNTER (Boring et al., 2016 and 2022) has evolved through several iterations into a capable 
solution for dynamic HRA. HUNTER was born from efforts to adapt a simplified static HRA method like 
Standard Plant Analysis Risk-Human (SPAR-H; Gertman et al., 2005) into a dynamic HRA framework, 
essentially as a proof of concept that could be scaled up to more complex HRA methods (Boring et al., 
2017). Additionally, HUNTER was scoped to model dynamic risk scenarios such as flexible coping 
strategy (FLEX) scenarios involving BDBEs and other risk contexts that may be less control room-centric 
than typical previous efforts (Joe et al., 2015). An additional benefit to the dynamic nature of HUNTER is 
that it enables human error to be treated as dynamic risk rather than as a static function, the latter being 
more common in most HRA approaches. Human performance is variable and depends on many factors 
that can shift and change in seconds based on the evolving surrounding context of the human activities. 
HUNTER’s dynamic approach thus allows for a more realistic assessment of human error risks and a 
wider array of contexts and scenarios to model, including consideration of what-if modeling that is 
difficult to perform with traditional static HRA methods. 

 

 
Figure 1. HUNTER conceptual components 

 

HUNTER includes three primary conceptual components—the Individual, Task, and Environment—
as depicted in Figure 1. 

• The Individual Component models those aspects that affect human performance such as 
performance shaping factors (PSFs) 

• The Task Component models what the human is doing and is primarily defined by operating 
procedures 

• The Environment Component models the technological system the human is using such as a 
simulation of an NPP that provides the environment context for the other two conceptual 
components. 

Each of these constructs capture various parts of the HUNTER architecture and include subcomponents in 
the software necessary to drive the scenario. For example, an overall Scheduler Model tracks the Monte 
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Carlo simulation runs and initiates each task while tracking the global time for the simulation as the task 
is executed. The Task Module handles the interchange between the Individual and the Environment as it 
advances along a timeline. Each of these constructs will be captured in more detail in later sections, 
however, it is important to note that this type of foundation allows HUNTER to capture models across 
three common areas of variability in risk modeling. The Individual allows for modeling different 
cognitive models, states, PSFs, or internal factors to human agents. The Task allows for the modeling of 
many different types of tasks from control room procedures to field operations. Lastly, the Environment 
allows for the integration of many different models of the “environment.” Within HUNTER, the 
environment can be truly the actual physical environment, it can be a plant model (more commonly used) 
which represents a simulation of a nuclear power plant, or a BDBE model. All of these mean that 
HUNTER can support immense variation in modeling needs and provide a dynamic modeling structure 
for human error in these spaces. 

2.2 Background 
This section captures a brief overview of key background concepts of the HUNTER method, 

specifically the separation between static and dynamic HRA methods, an overview of the Goals-Operator-
Method-Selection rules (GOMS)-HRA process used in HUNTER, and the past evolutions of the 
HUNTER method. 

2.2.1 Static versus Dynamic HRA 
HRA methods have often been described as either static or dynamic methods, with the former being 

far more common. Static HRA is associated with paper-based worksheet methods where analysts 
manually complete worksheets (or software equivalents) to arrive at the human error probability (HEP). 
While the paper nature of these analyses is indicative of the static characterization, this characterization 
goes further. Static HRA methods are also captured by a fixed calculation of an HEP for any given human 
failure event (HFE) scenario. What this means is that the assessment of an HEP for any HFE is fixed and 
is not modified by shifting situations or timing in the overall risk assessment, unless another worksheet is 
completed for a deviation scenario. This nominal course of human actions is a challenge in terms of 
ecological validity, because human performance is variable and does respond to changing timing or 
conditions. Therefore, static HRA methods are more limited in terms of realistically capturing human 
error. Of course, static HRA methods will capture context (e.g., by using different multipliers associated 
with the effects of PSFs), but these methods do not readily account for changing contexts within HFEs. 

Dynamic HRA is commonly characterized as including modeling methods to capture different time 
scales and varying conditions to capture a distribution of HEPs rather than a fixed HEP. Dynamic HRA 
can use Monte Carlo modeling methods, cognitive modeling, or other simulation platforms to capture the 
overall progression of any scenario and a constantly shifting environment to more realistically model 
human performance. Dynamic HRA methods can also provide additional metrics of human error beyond 
the HEP. Metrics such as task time duration, step duration, or even sub-step level parameters can help 
increase the depth of our understanding of human performance in these contexts. This allows for more 
analysis of interaction of these factors to task performance. By grounding modeling on the temporal 
aspects of performance we can better understand how PSFs and overall time executions can affect or 
predict performance. For example, if plant states mean that the operator cannot physically complete the 
necessary tasks before some safety system triggers, then the subsequent failure is not a human error. If the 
agent cannot possibly succeed then the failure was not due to human error. However, as human agents 
will have an unclear perception of time available before system faults, the stress response of feeling 
hurried may lead to human errors in the attempt. These errors can be better captured with the temporal 
foundation in the HUNTER method. This dynamic nature adds complexity but brings HRA closer to 
reality, which could be extremely valuable to capture error-likely situations and identify likely recoveries 
and mitigations. 
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2.2.2 Dynamic versus Computational HRA 
HUNTER has shown the utility of dynamic HRA in terms of considering the temporal dimension of 

human activities. While conventional HRA produces an HEP, HUNTER is able to generate additional 
quantitative outputs such as task time duration. HUNTER works by coupling a virtual operator model 
(i.e., a digital human twin) with a virtual plant model (i.e., a simulator or digital twin). The tight coupling 
of the operator and plant models allows exploration of the nuances of how events unfold through the 
feedback loop of an operator action and a plant response, leading to further operator responses leading to 
changes in the plant states, and so on (see Figure 2). 

 

 
Figure 2. Tight coupling and interactive feedback loop of operator and plant in HUNTER 

 

In accounting for the interplay between the human and the plant, an accurate estimate of time can be 
produced. The importance of time has been understood from early time reliability methods of HRA, since 
one of the ultimate measures of successful or failed events is whether or not required actions can be 
completed within a specific time window. This time window is a reflection of changing plant states (e.g., 
core heating resulting from insufficient cooling), which may lead to an escalation of the event, including 
core damage in rare cases. Plant parameters like core temperature evolve in a fashion to where there is a 
threshold of damage. The time window reflects when that threshold is crossed and provides an upper limit 
on how long the human has to complete certain actions. Dynamic HRA methods like HUNTER provide a 
simulation capable of estimating the duration of tasks and determining when safety time thresholds are 
crossed. Human error, in such cases, is not just the probability that the operator fails to complete a task; it 
is also the time it takes to complete tasks vs. the time available. 

 

 
Figure 3. New facets of risk possible with computational risk assessment (courtesy of Curtis Smith) 

 

HUNTER has been framed as a computation-based HRA (CoBHRA) approach (Rasmussen and 
Boring, 2016), which is the human-centered aspect of computational risk assessment (CRA; Sezen et al., 
2019).  CRA and CoBHRA make heavy use of computational tools like simulation and simulators to 
model plant or human performance. These tools may make use of multiple model codes in parallel, e.g., 
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HUNTER makes use of both a virtual operator and a simulator to represent the NPP. With multiple codes, 
there is also the opportunity to consider different aspects of risk than has been the case in historical 
applications of PRA and HRA. Some of the roadmap topic for CRA to tackle include temporal, spatial, 
mechanistic, and topological, related to timing, location, physics, and complexity issues, respectively (see 
Figure 3). Within CoBHRA, mechanistic issues might be considered psychological rather than physical 
phenomena. 

The potential for CoBHRA can be framed by considering the interrogative wh-words in English, 
including who, what, when, why, and how (Koutsoudas, 1968). Conventional static HRA can be 
considered to answer who and what as qualitative elements and how often as the quantitative element. As 
discussed in the previous section, dynamic HRA addresses temporal concerns—when and how long—that 
were not previously adequately considered in static HRA. Additional CRA elements are being introduced 
in future versions of HUNTER. 

 

Table 1. GOMS-HRA task level primitives 
 

Primitive Description 
AC Performing required physical 

actions on the control boards 
AF Performing required physical 

actions in the field 
CC Looking for required 

information on the control 
boards 

CF Looking for required 
information in the field 

RC Obtaining required information 
on the control boards 

RF Obtaining required information 
in the field 

IP Producing verbal or written 
instructions 

IR Receiving verbal or written 
instructions 

SS Selecting or setting a value on 
the control boards 

SF Selecting or setting a value in 
the field 

DP Making a decision based on 
procedures 

DW Making a decision without 
available procedures 

W Waiting 
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2.2.3 GOMS-HRA 
HUNTER decomposes procedure tasks into task level primitives (TLPs) according to the GOMS-

HRA method (Boring and Rasmussen, 2016; see Table 1).  Where applicable, the TLPs feature separate 
primitives for control room and field operations. For example, the Check (C) TLP can be divided into 
checking functions within the control room (CC) or in the field (CF). These TLPs follow a typical 
information processing framework adopted in cognitive psychology (Boring et al., 2018) as depicted in 
Figure 4, representing the most basic human activities delineated as sensation or perception, cognition or 
decision making, and behavior activities. Each of the TLPs also has associated task level errors, which 
identify the most likely types of errors to occur for each activity. The TLPs are mapped to nominal HEPs 
derived from static HRA methods. Additionally, the TLPs for control room activities feature timing data 
derived from simulator studies (Ulrich et al., 2017; see Table 2). Using nominal HEPs and timing data for 
the TLPs allows HUNTER to produce both HEP and duration outputs. 

 

 
Figure 4. Cognitive model of GOMS-HRA task level primitives  

 

Table 2. GOMS-HRA task level primitives 
 

Task Level 
Primitive 

5th  
%tile 

Time 
(seconds) 

95th 
%tile 

AC 1.32 18.75 65.26 
CC 2.44 11.41 29.88 
DP 2.62 51 152.78 
IP 3.35 15.56 40.66 
IR 1.47 10.59 31.84 
RC 3.08 9.81 21.90 
SC 3.01 34.48 115.57 
W 1.79 14.28 113.61 
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HUNTER 1 
 

Initial framework and demonstration of HUNTER concepts 
 

 
(Boring et al., 2016) 

 
 

HUNTER 2  
 

Initial standalone software demonstration of HUNTER 
 

 
(Boring et al., 2022) 

 
 

HUNTER 2.1 
 

Data collection of human operators 
 

 
New scenarios and simulator coupling 

 
(Park et al., 2022b) 

 
(Lew et al., 2022) 

 
 

Figure 5. Evolution of HUNTER  
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An important feature of the HUNTER method is the focus on timing data and the overall time 
duration of task performance. Due to the extremely dynamic nature of human performance, this focus is 
critical to ensuring a robust understanding of human error in complex systems. The PSFs impact human 
performance differently as time during a task progresses; so, including this timing structure can help 
understand more precisely when human error is more likely. The HUNTER method uses GOMS-HRA to 
hold and manage these task timings and durations. GOMS-HRA allows for each task to be broken down 
into subtask primitives which can then be summed at various levels to provide timing data for steps of a 
procedure or entire task performance. While this allows for capturing instances when a task’s failure is 
linked to running out of time, rather than making an error, it also provides a critical contextual data point 
which can be used to dig into human performance data and better capture when error rates rise and fall 
and when various PSFs trigger human errors. 

2.3 Previous Instances of HUNTER 
Previous iterations of HUNTER were initially focused on scaffolding out a framework for dynamic 

HRA or integrating diverse tools into a common software platform (see Figure 5). A modular philosophy 
of integrating different modeling tools to create a functional dynamic HRA approach was key to the early 
instantiations of HUNTER and persists to the current instantiation. For example, while HUNTER is 
aligned to the SPAR-H HRA method, the architecture deliberately allows for use of different HRA 
methods that may prove better fits to particular analysis needs. Similarly, HUNTER exists in versions 
with different plant models used for the Environment module: 

• A dummy-coded version that allows running without a plant model (HUNTER 2; Boring et 
al., 2022) 

• A version linked to the Reactor Excursion and Leak Analysis Program (RELAP5-3D) 
thermal hydraulics code (HUNTER 2; Boring et al., 2022) 

• A version linked to a simplified simulator for easier model development (HUNTER 2.1; Lew 
et al., 2022) 

Fundamentally, the core architecture of HUNTER follows the conceptual framework established with 
HUNTER 2 (Boring et al., 2022), namely the three conceptual modules: the Individual, Task, and 
Environment. The Individual module serves to contain the various parts of the user which need to be 
modeled. This can include a cognitive model, PSFs, and other features of the specific human operator that 
is being modeled. Similarly, the Task module contains the aspects of the task that the human operator is 
to perform. This can contain the specific scenario that is being modeled, e.g., steam generator tube 
rupture, the specific procedures that need to be called, the steps of said procedures, and the GOMS-HRA 
primitives for the task. An important part of navigating tasks is determining deviations between work as 
intended and work as done (Ashour, Ashcroft, and Phipps, 2021), meaning HUNTER should model when 
humans correctly follow procedures and when they fail to follow procedures. The Environment module 
serves to contain the relevant plant model or system in which the operator is performing, external PSFs, 
any specific time limits, and other information relevant to the system context.  

These modules serve as the high-level perspective of HUNTER. Specific software implementations 
and versions of HUNTER may shift the implementational details of HUNTER to suit particular analysis 
needs. Implementation modules go beyond the conceptual to the practical and logistics of the software 
itself. This report highlights a new implementation of HUNTER as an embedded tool to support PRAs 
using EMRALD. This implementation streamlines some features of HUNTER to allow incorporation 
within EMRALD’s architecture and to facilitate ease of HRA model development for EMRALD users. It 
must be noted that EMRALD-HUNTER represents a subset of HUNTER features, and it is intended that 
further development will continue on the standalone version of HUNTER. 
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3. INTRODUCTION TO EMRALD 
3.1 What is EMRALD? 

EMRALD (Prescott, Smith, and Vang, 2018; Prescott, Nevius, Ma, and Lawrence, 2022) is a 
dynamic PRA tool developed by INL. EMRALD is a tool developed to model and analyze the sequence 
and timing of events that lead to specific outcomes in the context of dynamic PRA. It provides a 
simplified modeling process similar to existing static PRA modeling approaches but with a web-based 
graphical user interface that makes it easy for users to model and visualize complex interactions in 
dynamic PRA scenarios. Figure 6 shows an example of a model diagram in EMRALD with its easy-to-
use flow diagram user interface. In addition to lowering the entry threshold for carrying out dynamic 
PRA, this tool allows users to couple the EMRALD models with other external codes.  

 

 
Figure 6. An example of the EMRALD model diagram 

 

3.2 HRA Using EMRALD 
EMRALD was developed primarily to support coupling PRA with physics-based tools to support 

time-based hazard scenarios such as flooding, but the EMRALD tool also includes useful functions 
suitable for implementing and exploring dynamic HRA. First, EMRALD supports dynamic modeling of 
human actions as they would actually be performed at NPPs in response to the changing conext of the 
plant. It simultaneously models the specific moment at which the action is performed, the time it takes to 
perform the action, and the failure probability of that action. Second, EMRALD allows evaluating 
timeline uncertainties of human actions based on Monte Carlo random sampling. Whether human actions 
can be completed within time constraints can be simulated and counted as overtime failure within 
EMRALD (Park et al., 2021; Park, Boring, and Ulrich, 2022).  
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There have been previous efforts to implement HRA models within the EMRALD tool. At the early 
stage of HRA research using EMRALD, two different approaches were suggested as summarized in 
Table 3. Procedure-based EMRALD modeling relies on procedural steps that describe the actions 
operators or plant personnel must perform in a given situation, while PRA/HRA-based EMRALD 
modeling makes the most of concepts and techniques that have been used in existing PRA and HRA. 
However, these two approaches feature a couple of limitations.  

• Procedure-based EMRALD modeling does not communicate with PRA elements such as 
information on equipment status (i.e., operational or failed). In actual situations, the required 
operator actions may vary, depending on whether certain pieces of equipment remain 
operational. If the approach fails to consider components in PRA fault trees, it may be highly 
limited for evaluating various scenarios that lead to failure.  

• For PRA/HRA-based EMRALD modeling, understanding how to assume time required for 
each basic event (i.e., HFE) and how to specifically model certain major HRA concepts (e.g., 
recovery opportunities) can be challenging and require more complex modeling or bloating of 
the model.  

• Furthermore, the methods were tested using only a small subset of procedures. A method of 
modeling a larger collection of procedural steps that could be used in a scenario is not 
explicitly suggested.  

• In addition, these modeling approaches do not fully consider PSFs, which influence human 
performance and are used to highlight error contributors and adjust basic HEPs. Adding PSF 
influences would require expert knowledge by the modeler and over complicate the model 
beyond what may be reasonable to expect of a probabilistic risk analyst without specific 
expertise in the nuances of human performance. 

 

Table 3. Characteristics of two different EMRALD modeling approaches to dynamic HRA  
 

 Procedure-based EMRALD 
Modeling (Ulrich et al., 2020) 

PRA/HRA-based EMRALD 
Modeling (Park et al., 2021) 

Description 
Specifically models procedural 
contexts 

Models basic events and HFEs already 
considered in PRA and HRA 

Characteristics 
Useful in accounting for context 
uncertainties that complicate HEP 
determinations 

Within PRA/HRA modeling, it could be 
used to validate timeline uncertainties 
not covered in existing PRA/HRA 

 

To handle the challenges posed by each approach and suggest a more structured and systemic method 
of analyzing human actions in the dynamic context, Procedure-based Risk Investigation Method – HRA 
(PRIME-HRA) and the Procedure-based Investigation Method of EMRALD Risk Assessment – HRA 
(PRIMERA-HRA) have been suggested (Park et al., 2021). The PRIME-HRA method provides guidance 
on implementing dynamic HRA, while the PRIMERA-HRA is the application of PRIME-HRA 
specifically within the EMRALD software. PRIME-HRA has contributed to the technical basis of the 
HUNTER tool, while PRIMERA-HRA has been used for understanding needs and requirements in 
dynamic HRA. Figure 7 summarizes the PRIME-HRA framework, which consists of four areas: (1) 
procedure-based task analysis, (2) task unit analysis for procedures applied to a given scenario, (3) 
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development of simulation models using dynamic risk assessment tools such as EMRALD and HUNTER, 
and (4) model analysis and integration into the PRA model.  

 

 
Figure 7. The PRIME-HRA framework 

 

Regarding the first step, task analysis is the process of collecting and analyzing task-related 
information necessary for performing HRA. In this step, we collect the input data required for modeling 
procedures and implementing dynamic HRA. These data include static PRA models, information (e.g., 
PSF data) related to HFEs, and relevant procedures. We then develop an event sequence diagram and 
identify its actual timeline.  

In the second step, the procedure paths in the event sequence diagram are decomposed to the task unit 
level. Basically, a procedure path consists of a couple of procedures that, in turn, include many procedural 
steps, each of which is comprised of a couple of task units. The task unit represents the procedure task 
type, as defined in the Human Reliability Data Extraction (HuREX; Jung et al., 2020) framework and 
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GOMS-HRA (Boring and Rasmussen, 2016). Time and HEP information are assigned for each task unit. 
In GOMS-HRA, the time information is assumed to follow a statistical time distribution whose mean 
value, standard deviation, and 5th and 95th percentile values are dependent on the particular task unit 
involved (Ulrich et al., 2017). The time data were collected through experiments involving actual 
operators at INL’s Human Systems Simulation Laboratory (Boring, 2020), which was designed to 
conduct critical safety-focused human factors research. Depending on the general approach suggested in 
existing HRAs, HEPs are calculated based on the relationship between a basic HEP and the PSF 
multiplier values. In the present report, basic HEPs for task units were derived from the HuREX database. 
PSFs suggested by the SPAR-H method (Gertman et al., 2005) method were employed.  

In the third step, simulation models are developed using dynamic risk assessment tools such as 
EMRALD and HUNTER. PRIMERA-HRA suggests detailed guidelines on how to develop simulation 
models using EMRALD. The simulation models developed based on these tools include all the 
information obtained from the previous steps, and are used for evaluating HEPs and time information for 
HFEs. Only task units relevant to critical human actions are used in the HEP evaluations, whereas the 
time information is evaluated for every task unit modeled in a given scenario.  

In the final step, HFE failure paths, HEPs, and overtime failures for HFEs are evaluated. Those HFE 
failure paths that are based on cutsets generated from simulation logs explain why a given scenario is 
considered failed. These can be used to correct modeling errors in dynamic HRA tools. The HEPs 
generated are provided to the HFEs considered in static PRA models, or to account for human errors in 
dynamic PRA models. Evaluation of overtime failures for HFEs addresses whether the HFEs are 
completed within their allotted time windows. If not, this is considered a guaranteed failure (i.e., HEP = 
1.0).  
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4. CONSIDERATIONS FOR INTEGRATING EMRALD AND HUNTER 
4.1 Need for Integration 

To properly evaluate human actions within a dynamic HRA model, it is important to provide 
sufficient contextual information describing the specific system or environment state at the moment that 
human actions are performed to understand the nature of human failures that may occur. In traditional 
static HRAs, information required for HRA processes is collected from procedures, structured interviews 
with knowledgeable experts, PRAs, and thermal hydraulics models. Procedures include detailed guidance 
on what operators or personnel need to do in most of situations that can happen in NPPs. Structured 
interviews are carried out to ask questions on things difficult for HRA analysts to understand or to collect 
plant-specific information such as time required to perform a human action. From the PRA side, event 
trees and fault trees provide specific scenarios where human actions are required, success criteria on 
human actions, or availability of systems in given scenarios. Lastly, thermal hydraulics analysis provides 
time windows of human actions (i.e., time constraints that operators need to finish their actions before 
plant states become irreversible) or plant parameters used by human reliability analysts to understand 
operational aspects in scenarios. 

The mutual cooperation and communication between the HRA data providers above are necessary to 
successfully perform dynamic HRA. However, EMRALD does not have all of these required functions to 
support a more realistic representation of human error within dynamic HRA. While the current EMRALD 
allows for generic modeling, the tool mainly focuses on plant behavior, general operator actions and 
linking in external codes rather than HRA, because EMRALD was not originally developed for HRA. For 
this reason, our research team has coupled HUNTER and EMRALD to make them mutually complement 
one another in terms of dynamic HRA functions. This coupling adds simple methods for important HRA 
functions in EMRALD without extensive HRA background on behalf of the analyst. Equally importantly, 
it provides a streamlined approach to use HRA functions from the standalone version of HUNTER 
without some of the complexities involved with detailed dynamic HRA modeling.  This approach proves 
more efficient than newly developing all dynamic HRA functions within EMRALD while ensuring PRA 
analysts can reasonably consider HRA without the need to master new tools like HUNTER. This 
combination enables small or simple HRA models to be combined under a simple EMRALD model, 
capturing a more realistic and detailed dynamic PRA and HRA. 

 

4.2 Dynamic HRA Functions Currently Available in HUNTER and 
EMRALD 

To couple EMRALD and HUNTER, it is necessary to understand what dynamic HRA functions can 
be included in each tool. Accordingly, this report investigates what functionalities are required for 
dynamic HRA and whether HUNTER and EMRALD can handle each function. Table 4 summarizes the 
list of necessary functions in dynamic HRA. The current availability of the functions within HUNTER 
and EMRALD is also summarized in the table. In the list, there are thirteen functions depending on the 
three areas of consideration, i.e., HRA, PRA, and thermal hydraulics codes and simulators. These 
functions are organically connected to reasonably generate outputs of dynamic HRA such as HEPs over 
time.  

The HRA section consists of three subsections, i.e., task analysis, qualitative analysis, and 
quantitative analysis. Task analysis includes two functions, i.e., 1) analyzing and modeling human actions 
within the tool and 2) inputting data required for simulation. These functions are available in both 
HUNTER and EMRALD.  
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• Regarding the first function, HUNTER has a module (i.e., the Task module) for loading 
written procedures and automatically converting them into visual diagrams representing tasks 
written in procedures via the HUNTER user interface. Users can manually add or delete the 
diagrams or change the relationships through the interface. EMRALD also has its own user 
interface, which enables manually defining human actions into diagrams and relationship 
between the diagrams.  

 

Table 4. List of requirements for dynamic HRA crosswalked to HUNTER and EMRALD 
 

Section Subsection Requirement HUNTER EMRALD 

HRA Task analysis Analyzing and modeling human 
actions within the tool Yes Yes 

Entering data required for simulation Yes Yes 

Qualitative 
analysis 

Determination of a set of PSFs Yes No 

Evaluation of PSF levels Yes No 

Quantitative 
analysis 

Calculation of HEPs Yes No 

Consideration of PSFs in dynamic 
context Yes No 

Time multiplier application Yes* No 

Evaluation of overtime failure No Yes 

PRA Event tree 
analysis 

Modeling event sequences 
depending on success and failure of 

systems 
No Yes 

Fault tree 
analysis 

Modeling failure of systems No Yes 

Entering failure data No Yes 

Thermal 
hydraulics 
codes and 
simulators 

Plant 
parameters Coupling plant parameters with 

functions in the tool Yes Yes* 

*Partially implemented or under development 

 

• For the second function, HUNTER assigns nominal HEPs and time required for human 
actions depending on task types suggested in the GOMS-HRA method. In EMRALD, there is 
a function for entering probabilities in a diagram to move between diagrams. Using this 
function, users can use HEP values to model the progression probabilistically from one 
diagram to other diagrams. Analysts can use HEP values to model the success and failure of 
human actions. Also, EMRALD enables users to add a time distribution into each diagram. 
Time values obtained from the time distribution via the Monte Carlo sampling can represent 
time required for human actions.  
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Second, the quantitative analysis includes two functions, i.e., 1) determination of a set of PSFs and 2) 
evaluation of PSF levels.  

• The HUNTER tool basically uses the eight PSFs suggested in the SPAR-H method, and users 
can select PSF levels for the SPAR-H PSFs via the HUNTER interface. HUNTER also 
includes provision for auto-calculating PSF levels.  

• EMRALD does not provide any function to determine a set of PSFs and evaluate PSF levels 
within the tool.  

Third, the quantitative analysis contains four functions, i.e., 1) calculation of HEPs, 2) consideration of 
PSFs in dynamic context, 3) time multiplier application, and 4) evaluation of overtime failure.  

• The current HUNTER tool implements the first and second functions. Specifically, for the 
HEP calculation, HUNTER basically estimates HEPs by multiplying nominal HEPs assigned 
from the GOMS-HRA method and PSF multipliers on PSF levels evaluated in the qualitative 
analysis. Regarding the PSF application, HUNTER provides an option on how to apply PSFs 
in the calculation. Users can select the same approach to existing static HRA or mathematical 
models implementing PSF multiplier changes over time in the HUNTER interface. In 
addition, recent HUNTER research identifies the increase of time required for human actions 
depending on PSF levels. The time multiplier concept is currently under development.  

• In EMRALD, evaluation of overtime failure is the only function available. This function is 
not currently implemented in the standalone version of HUNTER. Overtime failure refers to 
the failure caused when human actions are not completed within time constraints. If time 
required for human actions takes longer than their time constraints, it is assumed that human 
actions are guaranteed to fail. EMRALD enables users to add logic for evaluating overtime 
failure, then count it as a result of simulation.  

The PRA section is composed of two subsections, i.e., event tree and fault tree analyses, which are 
the major modeling approaches in existing static PRA. These also play an important role in dynamic HRA 
and require three functions for implementing dynamic HRA.  

• The first function related to event tree analysis is modeling event sequences depending on 
success and failure of systems. This function plays a role in defining specific environments 
and conditions at the moment human actions are carried out. In other words, it is used to 
differentiate scenarios, which require different mitigation strategies and human actions. 
Depending on scenarios, what human action needs to be analyzed in the dynamic context is 
determined. For example, after an initiating event, if a mitigation strategy is successful, the 
backup strategies would not need to be executed in the scenario. It means human actions for 
the first mitigation strategy are all needed to be analyzed, while other human actions included 
in the backup strategies do not need to be analyzed.  

• The second function is modeling failure of systems. As a function stemming from fault tree 
analysis, it specifically models various causes leading to failure of systems such as failure to 
open a valve or run a pump. This includes entering failure data into the causes that have been 
modeled.  

EMRALD supports such event sequence and fault tree modeling, while HUNTER does not provide these 
functions.  

In the thermal hydraulics codes and simulator section, coupling plant parameters with the HRA and 
PRA functions is a main function required in dynamic HRA. This function plays a role in providing cues 
for human actions or determining entry conditions of mitigation strategies. Previous research regarding 
dynamic HRA (Boring et al., 2016) attempted to estimate effect of the complexity PSF based on plant 
parameters. As noted in Section 2.3, HUNTER includes several implementations of the Environment 
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module and readily supports coupling to plant simulations. EMRALD also supports coupling to thermal 
hydraulic simulations but does this on a model-by-model basis and does not automatically include such 
simulations. 

4.3 Limitations of EMRALD for HRA 
As introduced above, EMRALD is specialized in dynamic PRA, coupling plant behavior, general 

operator actions, and external simulation results, but only handles the functions related to HRA in a 
limited fashion. Some challenges of using EMRALD for HRA include: 

• Users have to manually generate diagrams representing human actions and enter HEPs and 
time information in the diagrams. A procedure step includes multiple human actions, while a 
scenario requires a lot of procedure steps. Accordingly, modeling human actions in a scenario 
may need a lot of diagrams in EMRALD, causing additional model complexity.  

• Unlike HUNTER, EMRALD does not have a function for automatically parsing procedures 
to model human actions. If there are many diagrams generated in an editing window, 
manipulating diagrams or loading the window in the interface slows down and makes HRA 
modeling difficult and complex.  

• PSF level evaluation or HEP calculation are not available in EMRALD. Therefore, these need 
to be performed outside of EMRALD then added into EMRALD. Accordingly, within 
EMRALD, it is difficult to trace how HEPs and PSFs entered in diagrams have been 
evaluated. 

These challenges should not be considered shortcomings of EMRALD, because EMRALD was not 
originally designed for detailed HRA applications. The purpose of this report and accompanying research 
is to redress such challenges and enable a more seamless handling of HRA within EMRALD. 

4.4 Limitations of Standalone HUNTER for PRA 
The current standalone version of HUNTER mainly concentrates on the functions in the HRA section 

in Table 4 but does not provide the functions related to PRA. As mentioned in the previous section, the 
PRA functions can be used for defining different scenarios and determining human actions needed to be 
analyzed.  

• HUNTER mainly works on procedures, and the PRA functions can help HUNTER to 
navigate different scenarios like whether virtual operators keep performing the current 
procedure or whether they perform a contingency action transferring to other procedures. 

• If you have scenarios with multiple operator procedures that affect each other and depend on 
plant conditions, you need a complex HUNTER model made by someone with expert 
knowledge in HRA and PRA.  

• HUNTER does not provide a ready way to visualize event paths such as through event trees 
commonly used in PRA. 

The current effort helps integrate HUNTER into broader PRA applications. 

4.5 Advantages and Disadvantages of Integration 
The biggest advantage of integrating HUNTER and EMRALD is to complement missing functions 

required for dynamic HRA and PRA. HUNTER can use dynamic PRA functions via EMRALD, while 
EMRALD acquires HRA support from HUNTER. This integration would be more efficient rather than 
newly adding the duplicated functions within HUNTER and EMRALD, respectively. This integration 
also allows a human reliability analyst to develop simple models for individual tasks, assuming required 
inputs are provided. Libraries of tasks can even be modeled and given to a probabilistic risk analyst. This 
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allows the analyst to do the overall modeling and just pull HRA pieces as needed, assigning the inputs. 
This also enables simpler modeling and validation of HRA pieces before use.  

On the other hand, there may be some disadvantages of the integration such as running time increases 
due to the two-way communication between the codes or the inconvenience stemming from setting up a 
general software environment where both codes are simultaneously available. However, these may not be 
problems depending on how the codes are integrated. To minimize such disadvantages, the current effort 
focuses on embedding HUNTER functions into EMRALD. A tradeoff of this embedding is that the full 
suite of HUNTER functions are not transferred to EMRALD. However, these features are retained in the 
standalone HUNTER. Embedding HUNTER into EMRALD is an effective way to handle routine 
dynamic PRA applications needing HRA or specific EMRALD applications requiring greater HRA 
fidelity. For novel applications such as unexampled events or human factors design tasks that require a 
more in-depth understanding of human operational phenomena, standalone HUNTER remains the 
preferred analysis tool. Standalone HUNTER is designed for detailed HRAs and human performance 
modeling and retains those features where greater fidelity is required. 
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5. EMRALD-HUNTER IMPLEMENTATION 
5.1 Embedding HUNTER into EMRALD 

To perform a HUNTER HRA evaluation in EMRALD, a new type of state object needed to be added 
to EMRALD. An EMRALD model consists of diagrams made of different states. States have different 
types of events and actions that can occur depending on Monte Carlo sampling or conditions, but a full 
HRA event model is more than just an event or an action. This section explains the dynamic PRA 
simulation process in EMRALD and how HUNTER was integrated into it. 

EMRALD has a process to execute an external code as an action called an External Sim Action, 
shown in Figure 8. This action allows the user to specify two scripts. The first script modifies or sets 
parameters for the code to execute. The second script can read results and shift EMRALD states 
depending on those results, driving the model. This is an advanced feature of EMRALD and requires 
considerable skill from the user. If there is a commonly used code EMRALD provides a way to simplify 
this process by adding a custom form in the user interface. For this, someone with web development skills 
and knowledge about the software to be executed can make a form that allows the user to simply drag-
and-drop or select parameters to run the software. This was done for the Modular Accident Analysis 
Program (MAAP) thermal hydraulics tool MAAP (Prescott et al., 2022) and is shown in Figure 9. This 
option was first considered as a way to integrate HUNTER. However, a major benefit from HUNTER is 
the calculated time to perform an action. So, running HUNTER externally is not optimal because of the 
need to pass resultant values between HUNTER and EMRALD, a form of tight coupling described in 
Boring et al. (2023). 

 

 
Figure 8. External code execution in EMRALD 
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Figure 9. MAAP custom form for running an application in EMRALD 

 

A more fitting approach is a HUNTER specific event in EMRALD. When an EMRALD model is 
being simulated, there are states that the simulation moves in and out of. As the simulation moves into a 
specific state, it knows the events that the state cares about. If those events occur while the simulation is 
in that state, then it executes the actions for that event. If that state is exited, then those events are no 
longer relevant and are no longer monitored. There are two categories of events in EMRALD. The first 
are condition-based events, where if that condition occurs then the event is immediately triggered, such as 
the value of a variable being true or false. The second are time-based events, where a Monte Carlo sample 
picks the time that event will occur, such as a distribution event. 

 

 
Figure 10. HRA event code in EMRALD to call HUNTER 
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The return value of HUNTER would be similar to a Monte Carlo sampling of a distribution. This led 
to the creation of a new type of event in EMRALD. Each time-based event in EMRALD has a function 
that samples the time for the event. The standalone HUNTER software is written in the Python 
programming language, while EMRALD is written in the C# programming language. Therefore, the 
starting point for embedding HUNTER into EMRALD was porting the relevant subset of HUNTER code 
to C# so that it is compatible with the EMRALD codebase. For the HUNTER HRA event, EMRALD just 
calls the embedded HUNTER C# functions and returns the time and is shown in Figure 10.  

We have embedded the HRA Engine of HUNTER into EMRALD as a .NET 6.0 library in C#. The 
EMRALD environment is entirely in .NET, and embedding HUNTER as a .NET library provides distinct 
benefits: 

• Seamless integration—By porting the Python code to C#, HUNTER can achieve seamless 
integration with the existing EMRALD codebase, which allows for smoother communication 
between the modules. 

• Better performance—Native C# code may perform better than Python code, especially if 
there are computationally intensive tasks or multiple interactions between the modules, 
because Python is interpreted code, while C# compiles natively as a binary application. 

• Improved debugging—Debugging and stack tracing are much easier with a unified codebase, 
as HUNTER can use the same debugging tools and techniques as EMRALD. 

• Reduced latency—Porting the code to C# eliminates the need for inter-process or network 
communication between the modules, which can reduce latency. 

Implementing the HRA Engine in C# also provides an opportunity to re-work and re-think 
implementation strategies to reduce the overall complexity of the codebase while increasing some 
capabilities and maintainability of the codebase.  

Running the HUNTER model also requires the EMRALD model to either contain or have a reference 
to the HUNTER model. It was decided to include the HUNTER model at the end of the EMRALD model, 
which is in JavaScript Object Notation (JSON) format, to simplify maintainability of the model. The 
HUNTER event also needs data to specify the procedure name, steps, and context links for adjusting the 
PSFs. An example of the model data format and values are shown in Figure 11. 

It was also determined that the HUNTER HRA process would need to be able to specify which action 
would be taken when the event occurred. For example, the operator failing to perform the task is different 
than just the task having an infinite completion time. This means that an HRA outcome type must be 
linked to the desired action. Typically in EMRALD, an event triggers all the actions to occur that are 
under it. Another modification to EMRALD was needed to limit the actions according to the event results. 
To do this a new option was added to EMRALD simulation engine to allow an event to pick the actions 
available for execution.  

It is important to note that the scope of the integration does not include all the original HUNTER 
functionality. Instead, a manageable set of HUNTER functionality was extracted and modified to achieve 
the coupling. As a result, the functionality documented here is not identical to that of the larger HUNTER 
effort behind the standalone tool and described in Boring et al. (2022) and Lew et al. (2022).  
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Figure 11. A section of an EMRALD model in the JSON format specifying the HUNTER HRA event 

 

5.2 Conceptual HUNTER Module Integration  
The previous section provided background on how HUNTER was embedded into the EMRALD 

framework, including some changes to EMRALD to accommodate unique characteristics of human 
actions. Now, let us take a step back to effectively understand how HUNTER integrates into the 
encompassing EMRALD framework. It is first important to establish at a high, conceptual level how the 
context of the EMRALD model interacts with the HUNTER module. As can be seen in Figure 12 and 
Figure 13, two simplistic EMRALD models were constructed to represent loss of feedwater and steam 
generator tube rupture scenarios. The two EMRALD models for these scenarios are quite similar in that 
an initiating event leads to an HFEa for diagnosing the issue, and then if that human task is successful, the 
mitigation actions HFE is initiated to restore function for the affected plant components. EMRALD 
continues processing the encompassing model for the remainder of the simulation run. This is a simplistic 
model intended to show how HUNTER integrates with EMRALD, but in practice a more complicated 
EMRALD model would encounter failures related to the specific HFE in addition to other failure modes. 
In these more complicated models, the initial context conditions may be drastically different, and these 
varying contexts are passed to HUNTER as opposed to simple distribution sampling of time that occurs in 
simple models. Details for the HUNTER module integration are described next.  

 
a Note that a human failure event is a scenario, not a guaranteed failure. An HFE has the opportunity for failure or success. 
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Figure 12. Loss of feedwater EMRALD mode 

 

 

 
Figure 13. Steam generator tube rupture EMRALD model 
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Figure 14 contains the same loss of feedwater EMRALD model as depicted in Figure 12. However, 
Figure 14 also contains the additional custom time event objects developed to support HUNTER. A 
subsequent section will provide details on this new HRAEval event object created for EMRALD and its 
internal logic used to evaluate the HFE. For present purposes, it is sufficient simply to understand that this 
object represents the HUNTER module. This section will provide a detailed walkthrough of the model to 
explain the overall integration and will make use of the numbered items in Figure 14 to explain the flow 
of the model.  

As with all EMRALD models, the simulation begins with a start state denoted with a 1 in Figure 14. 
In practice this start state would likely be in another higher-level model, and this other model would 
simply call the initiating event state labeled with a 2. The initiating event state samples an elapsed shift 
start time that is used in the HUNTER module to calculate fatigue and fitness for duty. Figure 14 
numbered states 3 and 4 are the HFEs to diagnose and mitigate the loss of feedwater, which contain the 
actual HRAEval event object that executes the HUNTER module simulation. These two states are 
identical in structure but represent two distinct human tasks that must be completed in order, since the 
virtual operator must first diagnose the event as a loss of feedwater before the mitigation of the loss of 
feedwater can occur.  

 

 
Figure 14. Loss of feedwater EMRALD model with HUNTER module elements overlaid 

 

 
Numbers with blue backgrounds represent existing EMRALD elements, while numbers with orange 
backgrounds denote new objects developed to support the HUNTER module integration. The two shades of 
red depict HEP and time failure states calculated by the HRAEval event. 
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The HRAEval event logic is executed by the HUNTER module to return an elapsed time and an HEP 
of several possible types. The HRAEval event serially completes individual tasks contained within the 
specified procedure to generate a running total elapsed time. This process is explained in more detail later, 
but in general each GOMS-HRA primitive is evaluated to determine the elapsed time and HEP. Each 
primitive’s elapsed time is added to the total task elapsed time, which is checked against the available 
time provided by the EMRALD model to determine if an overtime failure has occurred. It is important to 
note that this occurs at the GOMS-HRA primitive level. As each primitive’s elapsed time is calculated, it 
is added to the total and compared against the available time before proceeding to the next primitive.  

Each GOMS-HRA primitive is evaluated for task completion success or failure in Monte Carlo 
fashion by comparing the calculated HEP value to a randomly generated number between 0 and 1. If the 
sampled number is less than the calculated HEP value, the task is designated and coded as a human 
failure. The calculated HEP serves as an upper bound on the error rate. There are multiple ways in which 
a failure could manifest, which is why there are four possible HEP failure states represented by the states 
labeled with the blue background number 5 in Figure 14: 

• PSF multipliers can result in the HEP exceeding a value of 1, which mathematically 
guarantees an HEP failure result with the state labelled “HEPGtOneFailure” or, in plain 
EMRALD influenced English, “HEP Go To One Failure”. The standard HEP failure in which 
the calculated HEP exceeds the random generated number between 0 and 1 is the state 
labeled “HumanErrorFailure.”  

• Overtime failure in which the overall task time exceeds the time available is represented by 
number 5 state labeled “OutOfTimeFailure.” 

• HUNTER can be configured to allow each primitive to be repeated to represent a failed but 
recoverable action in which the virtual operator can repeat the GOMS-HRA primitive 
multiple times if the current execution is a failure. For example, this could represent the 
operator attempting to look for a particular value, elapsing the corresponding time, not 
finding it, and then looking again to find it. In previous HUNTER documentation, this has 
been referred to as the “time-debt” repeat method to represent one form of human error. With 
this mode enabled, the analyst can also designate the repetition limit for the GOMS-HRA 
primitives, with a repeat limit of three being the value selected for the data presented in the 
evaluation portion of this report. If the calculated HEP comparison to random number 
generated between 0 and 1 fails three times, then the transition to “OnRepeatFailure” state 
action is triggered.  

• The final possible result state is labelled “MultipleFailure.” The multiple failure can result 
from several different situations in which a combination of the three possible HEP failures 
occur in sequence. This can only occur with the repeat mode enabled; otherwise HUNTER 
would simply return with either “HEPGtOneFailure” or “HumanErrorFailure.” It is important 
to note that HEP failure does not connotate an overtime failure, which will always be 
captured by the “OutOfTimeFailure” state. Future versions may be able to remove the 
“MultipleFailure” state outcome, but to ensure closure and HUNTER outcome resolutions it 
was included in this initial development effort as a catch all for potentially unforeseen 
modelling outcomes. 

If the HRAEval event results in both an elapsed time within the available time limit and a successful 
HEP outcome occurs, then the action to transition to the next HFE to mitigate the loss of feedwater event 
is triggered. The mitigate loss of feedwater (“MitigateLOFW”) state, denoted by a blue background 
number 4 in Figure 14, contains the HRAEval event, which is then executed in the same manner as was 
described above. The configuration of the mitigate event is different, and in turn HUNTER follows a 
different HFE, but the process is identical. The overall EMRALD model can fail here. Or, if the elapsed 
time is within the available time limit and the HEP outcome is successful, then the action to transition to 
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the “EventResolved” state, denoted by a blue background number 7, is triggered. “EventResolved” or any 
of the failure state outcomes triggered by the HRAEval event object result in updating the time on shift 
variable that captures the overall elapsed time for the model and immediately terminates by transition to 
the terminate state labeled as the blue background number 8 item.  

The next section will describe the HRAEval event in more detail to explain how the context of 
encompassing EMRALD model and task configuration for an HFE is represented so that it can be passed 
to the HUNTER module for execution.  

5.3 HRAEval Event Object 
EMRALD has a number of events that analysts can use to build PRA models for a given scenario. 

However, none of the existing events provide the functionality required for the EMRALD-HUNTER 
interface. Therefore, a custom time event, termed the HRAEval event, was developed to accommodate the 
unique requirements for integrated HUNTER (see Figure 15). Specifically, this new custom HRA event 
provides several key features and functions that are described in the following section to support the 
EMRALD-HUNTER integration. The corresponding JSON file was previously shown in Figure 11. 

 

 
Figure 15. Conceptual representation of the EMRALD HRAEval event that provides the interfacing 
functionality between an EMRALD model and the HUNTER module 

 

5.3.1 HRAEval Event Variable Exchange Functionality 
The HRAEval event supports the ability to pass EMRALD variables to the HUNTER HRA engine 

through a context link dictionary that can be seen in Figure 15. The names of the variables are analyst 
defined and specific to a given EMRALD model. Therefore, the context link dictionary object provides 
the method to map these variables to the standard set of HUNTER HRA engine variables used internally 
to calculate PSFs that are applied to the GOMS-HRA primitive time distributions and HEPs. In practice, 
this is achieved by the analyst tagging each EMRALD model variable with an appropriate HUNTER 
HRA engine variable.  

Conceptually, the variables can represent anything supported by EMRALD. HUNTER-relevant 
variables are envisioned to come from external plant model simulation parameters acquired from external 
simulation calls made through other event model objects in EMRALD. The initial effort presented in this 
report does not include an external plant model, due to ensuring simplicity and usability of the 
implementation. Instead, it defines HUNTER relevant variables within the EMRALD model as 
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EMRALD sampled variables. There are nine EMRALD variables exchanged with the HUNTER module 
as can be seen below in Table 5. 

The outcome variables calculated by HUNTER are passed back to EMRALD by leveraging the action 
object within EMRALD. The HUNTER module simply triggers an action to transition to the appropriate 
outcome state. These outcome states can then be used as a standard EMRALD object to call other events. 

In addition to serving as the conduit to exchange variables, the HRAEval event also serves as the 
mechanism for the analyst to define the HFE task in the form of a procedure name string, a starting step, 
and an ending step. The HRA module contains a small suite of prepopulated procedures. For flexibility, 
the analyst specifies a starting and ending step so that only the relevant sections of the procedure are 
performed. In its current form, the EMRALD-HUNTER codebase does not include the standalone 
HUNTER functionality to evaluate the logic within the procedure and adjust course through the 
procedure. The logic of the procedure is not evaluated, though prior versions of HUNTER have the 
functionality to allow the state of the plant in conjunction with the outcome of the virtual operator 
performing tasks to dictate the path through the procedure. Instead, in this instantiation, the procedure is 
treated simply as an ordered sequence of steps, with each step containing one or more GOMS-HRA 
primitives representing the actual tasks performed by the virtual operator to achieve the goals of each 
individual step and procedure. An example of the procedure represented a JSON object can be seen in the 
next section.  

 
Table 5. Variables exchanged by EMRALD and HUNTER 
 

Variable 
HUNTER 

Input 
Hunter 
Output Description 

AvailableTime Yes  Available Time to perform the EMRALD run 
before failure 

TimeRequired Yes  Time needed for operator to complete task (used to 
calculate Available Time PSF) 

StartTimeOnShift Yes  The time span an operator has been on shift used to 
calculate fatigue and fitness for duty PSFs 

TimeOnShift Yes Yes EMRALD current simulation time including 
HRAEval time 

HepGtOneFailure  Yes Calculated HEP > 1 ensuring task failure 

HumanErrorFailure  Yes 
Calculated HEP > random generated sample 

resulting in task failure; only occurs if repeat mode 
is disable 

OutOfTimeFailure  Yes While executing HUNTER simulation the available 
time was exceeded 

OnRepeatFailure  Yes The maximum number of repeats was attempted 
and all failed; only occurs if repeat mode is enabled 

MultipleFailure  Yes A combination of failures above were triggered 

 



 

 28 

5.3.2 HRAEval Event HRA Engine Logic 
As a starting place, the procedure is represented simply as a sequence of steps, which must all be 

executed in series to successfully resolve the initiating event. In their current form these steps directly 
contain GOMS-HRA primitive designators in the form of two letter string codes (see Table 1 in Section  
2.2.3). The primitive designators come from the HUNTER framework and conceptually can be viewed as 
a collection of the smallest basic human tasks such as acquiring information, reading a procedure step, 
and executing a control actuation. For the purposes of this development and evaluation effort, the GOMS-
HRA primitives can simply be viewed as the nominal time and HEP distributions associated with each 
step of the procedure. For each GOMS-HRA primitive in the model, the nominal time and HEP are 
sampled and then modified by associated PSFs. Figure 16 below shows how the procedure is executed.   

 

 
Figure 16. Pseudocode for the procedure execution representing the central functionality of the HUNTER 
HRA engine used to calculate human success or failure and the elapsed time for each task 

 

HRAEval is intended to allow users to specify partial tasks within EMRALD like diagnosing a steam 
generator tube rupture or taking mitigating actions. The HRAEval event allows users to specify a 
procedure name, the starting step, and an ending step so that users can decide the level of granularity they 
need in their model down to a single step (see Figure 17). HRAEval also allows users to define contextual 
variables including available time, time required, time on shift, and static PSF variables to be used by the 
HRA Engine for calculating PSF time and HEP multipliers and ultimately elapsed time for the event and 
success and failure of the event. 
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Figure 17. EMRALD-HUNTER interface for predefined procedures 
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6. DYNAMIC PERFORMANCE SHAPING FACTORS IN EMRALD-
HUNTER 

6.1 Introduction 
HUNTER was originally conceived as a dynamic implementation of the static SPAR-H HRA method 

(Boring et al, 2017). The HUNTER framework has since made great strides in its ability to use PSFs. 
Particularly innovative is a first-of-a-kind use of PSFs to influence not only the HEP but also task time.  
Previous versions of HUNTER (e.g., Boring et al., 2022) had some experimental work for using PSFs for 
task duration but did not in practice use PSFs for calculating time. With HUNTER embedded in 
EMRALD, we have a fully implemented version of the eight SPAR-H PSFs. We model four PSFS—
Fitness for Duty, Stress, Available Time, and Experience and Training—dynamically. In Section 6.3 we 
describe Fitness for Duty; in Section 6.4, Stress; and in Section 6.5, Experience and Training. First, in 
Section 6.2, we discuss the dynamic treatment of the PSF for Available Time. In the interest of a 
parsimonious proof of concept for making the SPAR-H PSFs dynamic, we sought to restrict modeling to 
the original eight SPAR-H PSFs. However, as might be expected within dynamic HRA and the treatment 
of time, there remain some concepts that do not transfer between static and dynamic HRA. Thus, the next 
section introduces Time Pressure as an extension to the original PSF list. The remaining four PSFs are 
treated as static PSFs that can be specified by the analyst. Each of these PSFs has a Diagnosis and Action 
variant, corresponding to the separate treatments in SPAR-H for cognitive vs. behavioral tasks, 
respectively. The levels of these variants are consistent across the factors, but sometimes the multipliers 
for Diagnosis factors are higher than their Action counterparts (Boring and Blackman, 2007). 

Figure 18 outlines the types of dynamic PSF configurations that are possible in HUNTER. PSFs may 
be either manually assigned (akin to static HRA) or automatically assigned for their initial state. They 
may then experience a dynamic progression such as adjusting for lag and linger (i.e., delay and decay 
functions) over time (Boring, 2015; Park, Boring, and Kim, 2019). They may also be automatically 
calculated based on emerging conditions (Boring et al., 2017). Figure 18 shows an example where PSFs 
are automatically assigned at the onset of the HFE scenario run and then updated dynamically for context. 
In practice, in EMRALD-HUNTER, PSFs are assigned manually by the analyst at the scenario outset and 
then updated for lag and linger functions. Table 6 shows how PSFs are determined in EMRALD-
HUNTER, while Table 7 shows how PSFs map to GOMS-HRA primitives, since every primitive is not 
relevant to every PSF. 

 

 
Figure 18. Types of PSF assignments possible in HUNTER 
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Table 6. Treatment of PSFs in EMRALD-HUNTER 
 

Factor Operation ID Levels (Multipliers) Static 

AvailableTime Action ATa InadequateTime (9999), 
BarelyAdequateTime (10), NominalTime 

(1), ExtraTime (0.1), ExpansiveTime (0.01) 

 

AvailableTime Diagnosis ATd InadequateTime (9999), 
BarelyAdequateTime (10), NominalTime 

(1), ExtraTime (0.1), ExpansiveTime (0.01) 

 

Complexity Action Ca HighlyComplex (50), ModeratelyComplex 
(20),  

Nominal (1), ObviousDiagnosis (0.01) 

Yes 

Complexity Diagnosis Cd HighlyComplex (5), ModeratelyComplex 
(2),  

Nominal (1), ObviousDiagnosis (0.001) 

Yes 

ErgonomicsHMI Action Ea MissingOrMisleading (50), Poor (20), 
Nominal (1),  
Good (0.1) 

Yes 

ErgonomicsHMI Diagnosis Ed MissingOrMisleading (5), Poor (2), Nominal 
(1),  

Good (0.01) 

Yes 

ExperienceAndTraining Action EaTa Low (10), Nominal (1), High (0.5) 
 

ExperienceAndTraining Diagnosis EaTd Low (3), Nominal (1), High (0.5) 
 

FitnessForDuty Action FfDa - 
 

FitnessForDuty Diagnosis FfDd - 
 

Procedures Action Pa NotAvailable (100), Incomplete (50),  
AvailableButPoor (20), Nominal (1), 
DiagnosticOrSymptomOriented (0.1) 

Yes 

Procedures Diagnosis Pd NotAvailable (10), Incomplete (5), 
AvailableButPoor (2), Nominal (1), 

DiagnosticOrSymptomOriented (0.01) 

Yes 

Stress Action Sa Extreme (50), High (20), Nominal (1) 
 

Stress Diagnosis Sd Extreme (5), High (2), Nominal (1) 
 

WorkProcesses Action WPa Poor (5), Nominal (1), Good (0.05) Yes 

WorkProcesses Diagnosis WPd Poor (5), Nominal (1), Good (0.05) Yes 
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Table 7. Relationships between GOMS-HRA operations and PSFs in EMRALD-HUNTER 
  

Operation Sub Operation Relevant PSFs 

Action controlRoom Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

Action field Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

Checking controlRoom Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

Checking field Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

Retrieval controlRoom Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

Retrieval field Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

InstructionCommunication produceWrittenOrVerbal Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

InstructionCommunication receiveWrittenOrVerbal Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

Selection controlRoom Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

Selection field Sa, ATa, Ca, Ea, EaTa, FfDa, Pa, WPa, TPa 

Decision basedOnProcedures Sd, ATd, Cd, Ed, EaTd, FfDd, Pd, WPd, TPd 

Decision withoutProcedures Sd, ATd, Cd, Ed, EaTd, FfDd, WPd, TPd 

 
 
 

6.2 Dynamic PSF for Available Time and Time Pressure 
The level for the Available Time PSF is calculated dynamically using the traditional approach of 

SPAR-H when both time available and time required are specified. When these attributes are not 
provided, the Available Time PSF is set to nominal. However, it is important to note that having a 
dynamic HRA system that calculates traditional categorical PSF levels for Available Time should be used 
with caution. If we step back, the purpose of the Available Time PSF is to capture failures due to running 
out of time. In fact, in SPAR-H, when there is inadequate time, the overall HEP is set to 1.0 (see Table 8). 
However, with HUNTER we explicitly track time with every run, and if Available Time is specified, 
HUNTER has internal logic to fail the task when the task duration (i.e., Time Required) exceeds 
Available Time. Therefore, care should be taken to avoid double penalizing tasks by setting Time 
Tequired equal to or greater than Available Time. We have elected to not co-opt the common notion of 
the Available Time PSF. Available Time is implemented and calculated when Available Time and Time 
Required are provided to HRAEval events as part of the HFE context.  
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Table 8. Available time PSF levels and multipliers in SPAR-H 
 

Task Type Available Time PSF Level Multiplier Value 

Diagnosis Inadequate Time HEP = 1.0 

Barely Adequate Time 10 

Nominal Time 1 

Extra Time 0.1 

Expansive Time 0.01 

Action Inadequate Time HEP = 1.0 

Time Available = Time Required 10 

Nominal Time 1 

Time Available ≥	5	x	Time	Required  0.1 

Time Available ≥	50	x	Time	Required  0.01 

 

Empirical data have shown that licensed operators can perform procedures in a slow and cautious 
manner as well as more expedient but careful manner. For this reason the ability to provide Time Pressure 
to expedite the pace of procedures is necessary to match empirical data. We have elected to include a 
ninth PSF for Time Pressure. The Time Pressure PSF only affects the aggregate PSF time multiplier and 
does not affect the HEP multiplier. Table 9 below lists the PSF factors that impact time. 

 

Table 9. PSFs with time multipliers in HUNTER 
 

Factor Operation ID Level (Time Multiplier) Static 

ExperienceAndTraining Action EaTa Low (3) Yes 

ExperienceAndTraining Diagnosis EaTd Low (3) Yes 

TimePressure Action TPa High (0.5), Nominal (1) Yes 

TimePressure Diagnosis TPd High (0.5), Nominal (1) Yes 

 

Time Pressure is needed to calibrate the pacing of HUNTER. In a previous effort (Lew et al., 2022), 
we used HUNTER to model task completion times for a loss of feedwater scenario and startup scenario 
with the Rancor Microworld Simulator (Ulrich et al., 2017). The estimated task times for startup, a 
normal operating procedure, where very close between HUNTER and Rancor. However, HUNTER took 
nearly twice as long as operators in completing the loss of feedwater scenario. This suggests that 
operators are capable of expediting their pace when necessary. This effect is captured with the Time 
Pressure PSF.  
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6.3 Dynamic PSF for Fitness for Duty 
6.3.1 Introduction 

SPAR-H (Gertman et al., p. 25) defines Fitness for Duty as: 
 

whether or not the individual performing the task is physically and mentally fit to perform the task 
at the time. Things that may affect fitness include fatigue, sickness, drug use (legal or illegal), 
overconfidence, personal problems, and distractions. Fitness for duty includes factors associated 
with individuals, but not related to training, experience, or stress. 
 

For the purposes of HUNTER, the dynamic treatment of the Fitness for Duty PSF is calculated according 
to two dimensions—Fatigue and general Fitness for Duty—which highlight physical and mental 
decrements, respectively. 

6.3.2 Fatigue 
As discussed, the Experience and Training and Time Pressure PSFs have levels with time multipliers. 

In aggregate these are used to scale the time sampled from the GOMS Task Primitive distributions. Time 
is also influenced by operator fatigue. In previous iterations of HUNTER we used the third order 
polynomial function presented in Figure 19. A curve-fitted equation was presented based on the data of 
Folkard (1997). Equation 1 can evaluate the relative fatigue index according to the hour on duty.  

 

 (1) 

 
where y is the fatigue index and x is the number of hours on duty. 

 

 

 

Figure 19. Time dependent 3rd order polynomial fatigue index based on Folkard (1997) 

  

! = 0.0054 "3 − 0.0939"2 + 0.4271" + 0.599 ($2 = 0.6912) 
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The fatigue index is used as a time multiplier in HUNTER. A notable shortcoming of this model is 
the exponential growth after 10 or so hours on shift. The last fitted data point is at 13 hours. If left 
unabated, task time estimates are 9.36 times slower if operators are 18 hours on shift. While 18 hours is 
an unreasonably long shift duration, if that were to occur, the time decrement is abnormally large and not 
empirically justified. Generally speaking, fitted models, especially those that grow exponentially, 
shouldn’t be trusted outside of their range. The fatigue index is meta analytic modeled from datasets 
examining fatigue (Folkard, 1997). Studies have shown that fatigue is influenced by numerous factors like 
shift duration, average duty cycle of shifts (e.g., working 3 consecutive 12-hour shifts), cumulative 
components, and time working on shift (Boring et al., 2020). Fatigue is also influenced by circadian 
arousal cycles. The data illustrate that the circadian cycle has a peak amplitude of around 50%. The data 
also illustrate that on average fatigue is 100% (relative fatigue index of 2) slower at 13 hours. The relative 
fatigue then roughly doubles over 2 hours (see Figure 19). When we take a closer look at the Folkard 
(1997) dataset we see standard errors of +/- 0.25, suggesting a fair amount of individual variation (see 
Figure 20).  

 

 
Figure 20. Fatigue risk rates with standard error from Folkard (1997) 

 
To accommodate for individual variability, the polynomial model has been adapted to a factorial model 
that simulates a circadian phase, followed by a baseline phase, and finally a fatigue onset phase in Figure 
21. The revised model has an R-squared over the same datapoints of 0.81 compared to the third order 
polynomial model in Equation 1, with R2 = 0.6912. But, more importantly, the revised model randomizes 
baseline fatigue, peak fatigue, time to fatigue onset, fatigue transition time, circadian amplitude, and 
circadian phase by sampling normal distributions to mimic human variability.  
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Figure 21. Simulated fatigue index values from revised factorial fatigue index model in blue and observed 
values from Folkard (1997) in red 

 

 

 

 
Figure 22. Ensemble plot of dynamic fatigue curves generated from stochastically setting revised fatigue 
model parameters 

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

Simulated vs. Observed

0

0.5

1

1.5

2

2.5

3

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

40
6

42
1

43
6

45
1

46
6

48
1

49
6

Ensemble of Revised Fatigue Models

Series1 Series2 Series3 Series4 Series5

Series6 Series7 Series8 Series9 Series10



 

 37 

Figure 22 has an ensemble of ten randomly generated fatigue models. The models have varied fatigue 
baselines, fatigue onset times, as well as peak fatigue levels after which the model holds steady. The 
multiplier is bounded by 0.3333 to prevent abnormally fast execution (3x normal speed). The C# 
implementation of the revised model is in Figure 23. In summary, time in HUNTER is influenced by both 
PSF time multipliers and the fatigue index. 

  

 
Figure 23. Function that calculates adjusted time in HUNTER as a function of fatigue 

 

6.3.3 Fitness for Duty 
The fatigue index attempts to model decrements in the time required to complete tasks, but does not 

directly account for accuracy or cognitive effects. If operators do have to work beyond 14 hours how is 
their cognition likely to be impacted? A well-documented psychological phenomenon is the speed-
accuracy tradeoff (Heitz, 2014), whereby as speed increases, accuracy declines. In terms of fatigue, 
accuracy reflects the cognitive effects. From Belenky (1994) we know that accuracy does decline with 
sleep deprivation, but at gradual pace out to 70 hours. Figure 24 depicts the decline in speed-accuracy per 
Belenky, and Figure 25 provides an ensemble plot of speed-accuracy from HUNTER. The fatigue index 
is inverse speed. So, by multiplying speed-accuracy by the fatigue index, we can obtain accuracy. 
Accuracy is the inverse of error rate, which is exactly what PSF multipliers are estimating. This means we  

can model accuracy—the inverse of human error—using the fatigue index and the speed-accuracy. 
First, we fit a second order polynomial fit to the decay curve. Then a dynamic Fitness for Duty PSF 
multiplier can be calculated as shown in Figure 26. 
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Figure 24. The impact of sleep deprivation on cognitive performance out to 72 hours (from Belenky, 
1994)  

 

 

 
Figure 25. Ensemble speed-accuracy curves from HUNTER with stochastically final accuracy 
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Figure 26. C# code to capture the relationship between speed, accuracy, and a fitness for duty PSF 
multiplier 

 
 
Figure 27 depicts ensemble trends of dynamic Fitness for Duty over a duration of 72 hours. In the 
HRAEval event a fatigue-speed-accuracy model has been implemented to replace the polynomial fatigue 
index function with dynamic factorial model of fatigue index with stochastically generated parameters.  
Note that the peak multiplier around 5 hours is representative of the after-lunch fatigue phenomenon. In 
conjunction with the speed-accuracy component of the model, the dynamic Fitness for Duty PSF is 
calculated as an inverse of the accuracy estimate. 

 

 

 
Figure 27. Ensemble plots for the dynamic Fitness for Duty multiplier over 72 hours 
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6.4 Dynamic PSF for Stress 
6.4.1 Introduction 

Stress refers to internal factors that cause mental tension and affect the ability of a person to focus and 
carry out activities.  Stressors are a similar mental tension caused by external factors. Together, Stress and 
Stressors (commonly referred to simply as Stress) form a PSF that can have positive as well as negative 
effects. However, in SPAR-H, this PSF represents the level of undesired conditions that operators face 
while performing tasks, such as mental stress and excessive workload. SPAR-H classifies Stress and 
Stressors into three levels: Extreme, High, and Nominal. The Extreme level is when the person is 
subjected to disruptive stress, such as when it is sudden and sustained for a long time, and a multiplier of 
5 is imposed. The High level defines a stress level higher than the nominal level due to factors like 
unexpected alarms, sustained noise, etc., and a multiplier of 2 is assigned. The Nominal level is a stress 
level conducive to good performance, and the multiplier is set to 1. In the absence of information, an error 
probability of 1 is charged for Stress and Stressors 

The dynamic PSF for Stress and Stressors has been described in detail previously (Park, Boring, and 
Kim, 2019). First, stress increases dramatically until it reaches a maximum level (Dorin er al., 2012) and 
returns exponentially to a normal state after a certain period (Vitousek et al., 2018). Boring et al. (2022) 
provide mathematical models of the stress PSF that consider both lag of stress kicking in and the lingering 
impact of stress over time. These models are shown in Figure 28 when the task execution time is under 60 
minutes, and in Figure 29when the task execution time is after 60 minutes.  
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Figure 28. A mathematical model of the stress PSF when the time to perform a task is less than 60 
minutes (from Boring et al. 2022) 
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Figure 29. A mathematical model of the stress PSF when the time to perform a task is greater than 60 
minutes (Boring et al. 2022) 

 

For both Figure 28 and Figure 29, T is the starting time of a task, Q is time to reach a maximum HEP 
value in a task, and R is time to return to nominal HEP level. M is the time to finish a task, which is the 
sum of the time required and the time to start of a task. K is a multiplier value from HUNTER, which is 
generally assigned as 1 (Nominal), 2 (High), or 5 (Extreme) in SPAR-H. f(M) is a PSF level limited by 
the lag effect when the time to perform a task is less than 60 minutes.  

Stress also impacts cognitive decision making. Stressors can come from a variety of undesirable 
conditions and circumstances and imped operators from optimally performing a task. Here we build on 
the lag and linger model of stress (Boring 2015; Park, Boring, and Kim 2019). The lag and linger model 
of stress is based on physiologically observed cortisol levels in humans in response to stress stimuli. After 
a stimulus is applied, there is a lag in the time it takes for the stress to reach peak levels. This lag is 
typically around 1 hour. Similarly, after a stressor has been removed the effects of stress and cortisol 
levels linger until they return to normal after approximately 3 hours. When a stress stimulus remains after 
1 hour, the stress level is sustained with previous lag and linger model. The trigger to remove stress is 
when the task has been completed or the required time required has expired. But, what if the task is never 
completed? What if the task cannot be completed or the time required to complete the time is several days 
or weeks? Physiologically humans adapt over to stressful stimuli and will eventually become exhausted.  

Here we have refined the lag and linger model to include adaptation. We refer to this model as Lag-
Adapt-Linger (see Figure 30). The revised model can dynamically simulate the presentation and removal 
of stress events and is presented in Figure 31. Figure 32 shows the ensemble model put into practice with 
stress applied and removed across ten samples. 
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Figure 30. Idealized lag, adapt, and linger curves from when the task is completed before the peak level 
has been reached (orange), before the lag period (gray), and before available time expires (blue) 

 
 

 
Figure 31. Idealized combined effect lag-adapt-linger curves from when the task is completed before the 
peak level has been reached, before the lag period, and before available time expires 
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Figure 32. Ensemble of ten lag-adapt-linger models with stressor introduced at 1 minute and removed at 3 
hours 

 

6.4.2 Context Parameters 
Three key time parameters can be specified as context links for HRAEval events. These specify 

ShiftTime (the time the operator has been on shift), AvailableTime (the time the operator has to complete 
the EMRALD Run), and TimeRequired (the time required for an operator to complete the tasking). Each 
of these parameters can be specified in seconds, minutes, or hours. For example, ShiftTimeH will specify 
time on shift in hours, and AvailableTimeM will specify the time available to complete the run in 
minutes. These variables should specify EMRALD SimVariables defined as doubles. (Note: If 
TimeRequiredM = 30 and TimeRequiredH = 1.5 are both specified, HUNTER will sum these and 
internally assign TimeRequired to 2 hours). 

In addition to these time parameters, static PSF levels can be set as context parameters. The context 
name should be the PSF (e.g., Stress). For convenience, the PSF levels pre-load into EMRALD’s global 
SimVariables. For example, Stress can be specified as Extreme as follows: 

    { 

            "contextName": "Stress", 

            "simVar": "Psf.Stress.Extreme" 

    } 
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6.5 Dynamic PSF for Experience and Training 
6.5.1 Existing Treatment of Experience and Training as a PSF  

Experience and training are among the key factors used to prevent or mitigate human error. In all 
countries that operate nuclear power plants, a formal educational system is provided to ensure reliable 
operation of nuclear reactors, and systematic training is conducted. Full scope simulator training (Swaton 
et al., 1987), which includes the reactor core and coolant systems, helps operators not only comprehend 
the nuclear power plant system, but also practice recognizing problems in case of an accident, making 
decisions, and taking appropriate actions. Through experience and training, it is possible to identify 
potential human errors and enhance the performance of operators. 

One challenge in conducting HRA data collection is the extensive amount of training found in nuclear 
power plants. Reactor operators and other plant personnel are highly specialized and in demand. Yet, the 
high skill makes it difficult to perform research on participants with lower experience and training. Due to 
the constraints of cost, time, and its complexity, performing full scope simulator studies to collect HRA 
data can be challenging. However, limited functions or data collection on human error can be practiced 
with simplified simulators such as the Rancor Microworld Simulator (Rancor) and Compact Nuclear 
Simulator (CNS) (Park et al., 2023; Park et al., 2021), using either student or professional reactor 
operators. One such study relevant to experience and training will be detailed later in this section. 

In existing HRA methods, the level of the Experience and Training PSF is determined based on 
expert judgment, and a multiplier is applied to the nominal HEP. The higher the PSF multiplier, the 
greater the HEP. The Experience and Training PSF, like all PSFs in SPAR-H (Gertman et al., 2005), 
distinguishes between Diagnosis and Action and is divided into three levels. For Diagnosis, the multiplier 
is 10 for the Low level (signifying a 10x increase in error when experience and training are low), 0.5 for 
the High level (signifying a ½ decrease to credit experience and training), and 1 for nominal or 
insufficient information cases (signifying no change over the nominal error rate). For Action, the 
multiplier is 3 for the Low level, 0.5 for the High level, and 1 for nominal or insufficient information 
cases. The original HRA method, Technique for Human Error Rate Prediction (THERP; Swain et al., 
1983), categorizes the experience level as skilled and novice with the multiplier ranging from 1 to 2. 
Novice includes operators who have less than 6 months of experience with a reactor operator (RO) 
license, auxiliary operators (AO), maintainers, and technicians. As it is generally accepted that full 
performance capability requires about 6 months of experience, the training year is also taken into account 
(Swain et al., 1983). The Accident Sequence Evaluation Program (ASEP) method (Swain et al., 1987), a 
simplified version of THERP, divides into the cases where training is not considered and cases where 
well-known and practiced events are handled. In these cases, the multipliers of 10 for upper bound and 
0.1 for lower bound are applied. Otherwise, the nominal HEP is applied. Cognitive Reliability and Error 
Analysis Method (CREAM; Hollnagel et al., 1998) evaluates the adequacy of training and preparation, 
taking into account the readiness of the work or familiarization. The PSF has three levels, with the 
multipliers ranging from 0.8 to 2.  

Experience and training PSFs define several parameters, including the time elapsed since training or 
the period of requalification training, the quality of training, and existence of training. If there has been a 
lack of requalification training or a significant amount of time has elapsed, the PSF level is evaluated as 
Low. On the other hand, if the crew has just completed 10 days of refresher training, the PSF level is 
assumed to be Nominal or High. When considering the quality of training, inadequate training such as 
reluctance to use water to extinguish a fire or relying on incorrect guidance is assumed to correspond to a 
Low level of the PSF. Additionally, a general lack of training is evaluated as a Low level, while simulator 
training is regarded as a High level of the PSF (Gertman et al., 2005). 
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6.5.2 Experience and Training PSF Based on Objective Parameters 
A brief overview of the relevant cognitive mechanisms known to govern experience and training 

provides the rationale for defining the experience and training PSF in HUNTER. The human information 
processing model people use to make decisions is depicted in Figure 33. This model comprises short term 
memory, working memory, long term memory, recall, and response (Campbell et al., 2002). Short term 
memory retains information over a short period of time. As shown in Figure 34 (left), recall performance 
for short term memory diminishes over time. Long term memory stores repetitive or long-standing 
memories, such as semantic memory or episodic memory. However, long term memory also has its 
limitations, and its performance can be improved through overlearning and increasing the recall number, 
as shown in Figure 34 (right). Working memory is a process of converting information from short term 
and long term memories into cognitive and physical actions such as decision, and includes some 
processing mechanisms such as chunking to enhance the memories (Cowan et al., 2008). 

 
Figure 33. Human information processing model (from Campbell et al., 2002) 

 

 

 

 
Figure 34. Recall probability depending on retention interval for short term memory (left) and recall 
ability depending on the number of recalls (right) (from Campbell et al., 2002) 
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Short and long term memories can both contribute to deteriorated human performance (Swain et al., 
1983), but training can help memory capacity. In a dynamic flight emergency, a pilot’s intuition is critical 
when making decisions. This is an unconscious process from memories stored through experience. To 
strengthen this ability, it is recommended to enhance training, expand experience, and repeat it 
(Manurung et al., 2022). Swaton et al. (1987) also suggests that operators can enhance their performance 
by continuing training with retraining to update and expand their knowledge and skills. In 
cardiopulmonary resuscitation (CPR) experiments (Curry et al., 1987), the training effect showed 
improved performance, but this improvement cannot be sustained for more than 6 months. Thus, the 
importance of regular training programs is suggested to maintain good performance. 

However, there is no specific analysis of the effect over specific parameters such as time in existing 
HRA methods, except for the classification of skilled and novice operators based on six months of 
experience in THERP (Swain et al., 1983). In SPAR-H, one of the factors for evaluating the Experience 
and Training PSF is time elapsed since training or periodic requalification training (German et al., 2005). 
As time elapses, the effect of experience and training on positive performance decreases due to the 
deterioration of memory over time, which can be represented by a forgetting curve. On the other hand, as 
the amount of experience and training increases, the effect of the experience and training performance 
may increase, indicating the capacity for long term memory.  

The forgetting curve depicts the relationship between memory retention and time elapsed. Ebbinghaus 
(Wixted et al., 1991, Murre et al., 2015) was the first to propose the forgetting curve, which is fitted with 
a power function or a logarithmic function, indicating a rapid decrease in memory retention over time. 
Although Murre et al. (2015) successfully replicated Ebbinghaus’ experiment, there is no universally 
agreed upon form of the forgetting curve among researchers (White et al., 2001; Jaber et al., 2004). 
Nevertheless, it is generally accepted that the curve illustrates a decline in memory performance over 
time, with performance improving as additional review is implemented.  

The Experience and Training PSF can be dependent on the time elapsed since training and the amount 
of training, as illustrated by the forgetting curve. It is possible to predict human performance related to the 
PSF based on the trend depicted in Figure 35 (cf. Kim et al., 2021). 

 

 
Figure 35. Predicted memory performance depending on time elapsed 
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6.5.3 Experience and Training Effects Evaluated from a Simplified Simulator 
Study 

The data from a recent study (Kim et al., 2023) evaluating the use of simplified simulators to collect 
human performance data to inform HRA methods was further analyzed to examine experience and 
training effects. The study was structured such that the student participants completed four sessions of 
simulator scenarios, each separated by approximately two weeks. These data provided the opportunity to 
evaluate experience and training effects longitudinally. 

6.5.3.1 Methods for Study 
Rancor is a simplified nuclear power plant simulator developed by INL and University of Idaho 

(Ulrich et al, 2017). Using Rancor, an experimental participant can identify the status of components and 
systems in both normal and emergency situations and practice simulated operations with simplified 
procedures. In this study, the participants were students who lacked extensive experience and knowledge 
about operating nuclear power plants. The study design is specifically structured to observe the outcomes 
of training and experience over time with participants who had little prior knowledge or experience in 
nuclear power plant operations.  

The study was conducted with 16 students majoring in nuclear energy at Chosun University in South 
Korea (Kim et al., 2023). They performed 10 simplified scenarios including start up, shut down, manual 
rod control during startup, manual feedwater flow control during startup, failure of a reactor coolant pump 
under full power operation, failure of a control rod under full power operation, failure of a feedwater 
pump under full power operation, turbine failure under full power operation, and steam generator tube 
rupture. Four trial sessions of experiments were scheduled, with each trial featuring four scenarios. 
Different, randomly selected scenarios were performed in each trial, although there are some overlapping 
scenarios across all the trials. While analysis within the same scenario across multiple trials would have 
been ideal, the simplified scenarios and procedures ensure a reasonable approximation. There was an 
average interval of 14 days between rounds. 

 

 

 
Figure 36. Number of errors across trials 
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6.5.3.2 Results of Study 
The first analysis examines errors of commission—in which participants fail to take appropriate 

actions—and errors of omission—in which they omit the procedures while following the designated 
procedures. The result, as depicted in Figure 36, indicates decreases in the number of commission and 
omission errors as the number of trials increases. The reduction in errors can be attributed to the training 
effect, which enhances the participants’ experience and training performance over successive trials. 

The second analysis aimed to determine the impact of training on human performance by measuring 
the average time to complete a task and the error rate. Figure 37 shows the distributions of these variables 
based on the number of trials. As the number of trials increases, the means of these distributions decrease, 
indicating an improvement in human performance with increased training.  

 

 
Figure 37. Distribution of average time to complete a task (left) and error rate (right) depending on trials 

 

Furthermore, the results of the experiment also indicate that within the same experiment, the average 
time to complete a task and the error rate both decrease as the number of trials increase, as shown in 
Figure 38. However, when another experiment is conducted again after a period of time, there is a 
decrease in performance, which is then followed by an improvement as the number of trials increases. 
This suggests that the effectiveness of training is not permanent and may decay over time, but can be 
regained through additional training. This finding mirrors the crests and troughs of the forgetting curves 
over time as shown in Figure 35. 

 

 
Figure 38. Means of average time to complete a task (left) and error rate (right) depending on 
experimental rounds and trials 
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6.5.4 Proposed General Form of Experience and Training PSF 
While there is no generalized form of experience and training that can be derived absent training 

context, it is possible to calibrate high levels of training (indicated by repeated training trials) to the 
multiplier levels in SPAR-H for the Experience and Training PSF. Additionally, it is possible to model a 
decay curve as a function of elapsed time since last training. This forgetting curve is reset with refresher 
training. However, over time with additional training and experience, the forgetting curve is not as strong, 
indicating a shallower slope. Additional empirical data points are necessary to calibrate the function, but 
it generally takes the form: 

 (2) 

where: 

• Xt is the multiplier for training and experience in SPAR-H at given time t, 

• X0 is the initial experience and training, 

• e is the base of the natural logarithm, 

• L1 is the decay constant for the number of trainings, a positive value related to the decay over 
time, 

• L2 is the growth constant for the time elapsed since training, a positive value related to the growth 
over time,  

• N is the number of trainings, and 

• T is the total time elapsed. 

 

This form of the equation only accounts for nominal or negative influences of Experience and 
Training as denoted by PSF multipliers ≥ 1. Because SPAR-H Action tasks would have a range of 1-3, 
the maximum value is 3 and minimum value is 1 in Equation 2. Equation 2 decreases exponentially with 
respect to the number of trainings and increases exponentially with respect to the time elapsed since 
training. Currently, the constants, L1 and L2, are unknown, but the constant, L1, for the number of trainings 
would be a small number for highly skilled individuals, indicating a slow decay, and a large number for 
less skilled individuals, indicating a fast decay. When refresher training is administered, it restarts the 
function, with Experience and Training at a high level, as denoted by a low PSF multiplier. The constant, 
L2, for the time elapsed since training is related to the effect of growth, so it would be less than the 
constant for the number of trainings.  

Note that X is a multiplier that is inversely related to experience and training. The lower the 
experience and training, the higher the actual Experience and Training PSF is, and the higher the error 
probability will be. Conversely, high levels of experience and training would result in a low multiplier. 
Thus, the decay function of forgetting results in an increase in X, effectively making it a growth function 
for the HEP. 

The study discusses the effects of training on the Experience and Training PSF multiplier with the 
assumptions made in Equation 2. The values of L1 and L2 are assumed to be 0.01 and 0.001, respectively, 
and the initial multiplier is assumed to be 5. The modeling assumes that the multiplier has a range of 1 to 
10, although in actual SPAR-H, it has a range of 1-3. The results show that the multiplier decreases with 
the number of trainings, as shown in Figure 39, and increases with time elapsed since training, as shown 
in Figure 40. The study assumes a larger decay constant than the growth constant, resulting in a faster rate 
of decrease.  

!! = !0 "−L1N+L2T  
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Figure 39. Experience and Training PSF multiplier decreasing depending on the number of trainings (L1 = 
0.01, L2 = 0.001) 

 

 
Figure 40. Experience and Training PSF multiplier increasing depending on the time elapsed since 
trainings (L1 = 0.01, L2 = 0.001) 

 

Additionally, the study shows the effect of training cycle on the multiplier, as shown in Figure 41 and 
Figure 42, which demonstrate the changes in the Experience and Training PSF based on both of the 
number of trainings and the training cycle. Figure 41 shows the case of training for 10 days in an interval 
of 40 days, and Figure 42 shows the case of training for 5 days in an interval of 3 months. However, it 
should be noted that the constant values used in the study are assumptions, and training for 5 days in an 
actual 3-month cycle would not necessarily degrade performance. 
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Figure 41. Experience and Training PSF multiplier for 10 days of training in a 40-day cycle (L1 = 0.01, L2 
= 0.001) 

 

 

 
Figure 42. Experience and Training PSF multiplier for 5 days of training in a 3-months cycle (L1 = 0.01, 
L2 = 0.001) 
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7. SAMPLE ANALYSES 
7.1 Introduction 

To test and demonstrate the EMRALD-HUNTER coupling, two scenarios were modeled and run. The 
outputs of the EMRALD-HUNTER models were benchmarked against outputs from the standalone 
version of HUNTER for steam generator tube rupture (SGTR; Boring et al., 2022) and loss of feedwater 
(LOFW; Lew et al., 2022) scenarios.  

7.2 Steam Generator Tube Rupture (SGTR)  
7.2.1 SGTR Description 

In a pressurized water reactor (PWR), the steam generator plays a crucial role in the transfer of heat to 
produce steam for the secondary side, which in turn drives the generator to generate electricity. Moreover, 
after the reactor is shut down, heat transfer serves to remove decay heat. The steam generator is also 
essential in isolating the primary side, which may contain radioactive material, from the secondary side. If 
one or more tube ruptures occur in the steam generator, the flow can leak from the primary side to the 
secondary side due to the higher pressure on the primary side. As a result, the core level in the primary 
side decreases, and a charging pump and safety injection system are required to recover the coolant. It is 
also important to isolate the defective steam generator to prevent any radioactive material from leaking 
into the secondary side, which may release into the environment. 

In the past, several SGTR accidents have occurred, but they have not caused significant doses to the 
public as reported in NUREG/CR-6365 (MacDonald et al., 1996). Some historic SGTRs involving 
operator performance include: 

 

• An SGTR accident occurred in 1991 in steam generator A of Mihanma Unit 2 due to high 
cycle fatigue. When the air ejector high radiation alarm and the secondary steam blowdown 
radiation monitor alarmed, the operator promptly started the charging pump and reduced the 
reactor power to shut it down. The reactor automatically tripped, and the turbine also tripped. 
The safety injection pump was automatically started due to the low level of the pressurizer 
and low pressure of the reactor coolant system (RCS). The operator identified the defective 
steam generator and isolated the main steam line isolation. However, a manual closing action 
was required as the valve did not close properly. Subsequently, the operator opened the steam 
relief valve to cool the RCS in the intact steam generator and used the pressurizer auxiliary 
spray to depressurize the RCS. As the RCS pressure lowered, the leak flow was reduced, and 
the pressurizer level was restored. Then, the operator stopped the two safety injection pumps. 
In this accident, the radiation alarm was the first indication of SGTR, and the operator's 
prompt response prevented the escalation of the accident. 

• In 1993, tube rupture occurred in steam generator 2 of a unit at Palo Verde Nuclear 
Generating Station due to outside diameter stress corrosion cracking from tube-to-tube 
crevice formation. The pressure and level in the pressurizer decreased, and the operator 
immediately started the charging pump and energized the pressurizer heater to restore the 
level and pressure. However, the level and pressure continued to decrease, leading to de-
energization of the pressurizer heater. The operator manually tripped the reactor, and the 
turbine automatically tripped. Because of pressurizer low pressure, several safety systems 
such as safety injection actuation system (SIAS) and the containment isolation actuation 
system were actuated. All of charging and safety injection systems restored the pressurizer 
level and pressure. An SGTR was suspected, but it could not be diagnosed immediately. The 
entry condition of the SGTR procedure was not satisfied, so the operator entered the 
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functional recovery procedure (FRP). The procedure focused only on the current situation 
rather than previous trends, and alarms and indicator alarms for SGTR were also not 
presented, making it more confusing for the operator. After the indicator alarm for SGTR, 
which was isolated when SIAS was restored, the operator performed the SGTR procedure 
and successfully diagnosed defective steam generator and isolated it. Although the power 
plant was safely stabilized, there was a slow response due to the operator actions. 

 

To mitigate an SGTR, operator actions are necessary to minimize leakage from the primary system to 
the secondary coolant system and to maintain primary coolant subcooling. The operator should identify 
the point of leakage within an appropriate time through radiation alarms, diagnose the SGTR, determine 
the defective steam generator, and isolate it. Additionally, the operator should take action for RCS 
cooling, such as dumping steam. In case of automatic system failure, such as the radiation alarm for 
helping to diagnose SGTR or the safety injection system for recovering coolant, the operator should 
restore or manually start the system. Furthermore, while safety injection is necessary to recover the 
coolant, an operator action to stop the safety injection system is also required later to depressurize for 
reducing the break flow. These accidents highlight the critical importance of considering human factors in 
nuclear power plant operations. 

7.2.2 SGTR PRA Modeling 
SGTR is classified as an event where the break flow leaked from the primary to the secondary coolant 

exceeds the normal charging flow capacity (U.S. Nuclear Regulatory Commission, 1988). An event tree 
for SGTR has been developed by INL and is presented in Figure 43 (Ma et al., 2019). The event tree 
consists of an initiating event and 11 event tree headings listed in Table 10, and 22 scenarios are analyzed 
based on these headings. The event tree is designed to show how these scenarios can lead to either a 
stable state or core damage. The event tree provides a useful tool for analyzing the potential scenarios of 
SGTR. 

 

 

 
Figure 43. Generic SGTR event tree (from Ma et al., 2019) 
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Table 10. Event tree headings for SGTR (from Ma et al., 2019) 
 

Heading Description 

IE-SGTR Initiating event of steam generator tube rupture 

RTS Reactor trip 

AFW Supply of the auxiliary Feedwater system to steam generator 

HPI Injection of high-pressure safety injection system 

SGI Isolation of ruptured steam generator 

SSC Cooldown of primary & secondary sides 

CSI Termination or Control of high-pressure injection system 

FAB Feed and bleed operation 

REFILL Refill of refueling water storage tank (RWST) 

HPR High pressure recirculation operation 

RHR Removal of residual heat 

ECA Depressurization of the primary and secondary for decay heat removal/recovery 

 

In the event tree for SGTR, the first scenario leads to a stable state where auxiliary feedwater can be 
successfully supplied to the steam generator, HPI is successful, ruptured steam generator is isolated, 
primary and secondary sides are cooled down, HPI is terminated, and residual heat is removed (Scenario 
1). Even though the residual heat removal fails, it is still possible to lead to a stable state through 
successful depressurization of primary and secondary sides and alignment for RHR (i.e., ECA) (Scenario 
2). However, if both RHR and ECA fail, it results in core damage (Scenario 3).  

If HPI fails to terminate after cooldown, primary and secondary sides cannot be cooled down or the 
steam generator cannot be isolated, either RWST refill or ECA is required. If RWST fails to be refilled 
with ECA failure, it leads to core damage (scenarios 6, 9, and 12 respectively). However, if either RWST 
refill or ECA succeeds, it results in a stable state (scenarios 4 - 5, 7 - 8, 10 - 11). 

When auxiliary feedwater is operational but HPI fails to operate, it is necessary to isolate the 
defective steam generator, cool down the primary and secondary sides, and remove the residual heat 
(Scenario 13). If any of these mitigations fails, it may result in core damage (Scenario 14 - 16). On the 
other hand, if auxiliary feedwater fails to operate, it is necessary to operate HPI, isolate the ruptured steam 
generator, and perform feed and bleed as well as high pressure recirculation to mitigate the accident 
(Scenario 17).  If any of these mitigations fails, it may lead to core damage (Scenario 18 - 21). Finally, in 
the case where the reactor trip fails, it is analyzed as an anticipated transient without scram (ATWS) 
scenario (Scenario 18-22). 

Table 11 provides several HFEs considered in SGTR (Ma et al., 2019). In addition to diagnosis of the 
SGTR, the operation actions to mitigate the accident include feed and bleed, RHR operation, and control 
or termination of safety injection flow. Additionally, the operator’s response is also included when the 
automatic system such as the reactor protection system fails. By considering these HFEs, it is possible to 
assess the extent to which an operator’s actions may have contributed to the accident or identify any 
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weakness in the system. This information can be used to improve the design of the system, as well as the 
training and procedures, with the aim of the reducing the risk of the accident. 

 

Table 11. Generic human failure events in SGTR 
 
Index Description of Human Failure Events 

1 Operators fail to diagnose SGTR and start procedures.  

2 Operators fail to respond with reactor protection system signal present.  

3 Operators fail to maintain pump suction.  

4 Operators fail to control auxiliary feedwater turbine-driven pump after battery depletion;   Non-
Station Blackout. 

5 Operators fail to initiate feed and bleed cooling. 

6 Operators fail to start high pressure recirculation.  

7 Operator fails to refill the refueling water storage tank. 

8 Operators fail to control/terminate safety injection flow. 

9 Operators fail to initiate residual heat removal. 

10 Operators fail to recover offsite power in 1 hr. 

11 Operators fail to align AC power given non-Loss of offsite power. 

12 Operators fail to depressurize RCS/secondary side.  

13 Operators fail to depressurize RCS/secondary side (Rapid).  

14 Operators fail to implement SGTR procedure ECA 3.1 & 3.2. 

 

 

7.2.3 EMRALD-HUNTER SGTR 
This section describes an SGTR model developed in EMRALD with embedded HUNTER 

functionality. Figure 44 (repeated from Figure 13 for purposes of illustrating the current explanation) 
shows the EMRALD-HUNTER SGTR model. The model includes eleven states:  

1) “Start” 

2) “InitiatingEvent” 

3) “DiagnoseSGTR” 

4) “MitigateSGTR” 

5) “HepGTOneFailure” 

6) “HumanErrorFailure” 

7) “OutofTimeFailure” 
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8) “OnRepeatFailure” 

9) “MultipleFailure” 

10) “EventResolved”, and 

11) “Terminate.”  

 

 
Figure 44. The EMRALD-HUNTER SGTR model 

The “Start” state indicates the start of simulation in EMRALD-HUNTER. In the “Start” state, the 
event “SampleStartTimeOnShift” randomly samples the start time on shift from a time distribution added 
by users, then leads to the “InitiatingEvent” state. The start time on shift and overall time on shift 
modeled in states are used for estimating values in dynamic PSF calculationa for Fitness for Duty. The 
“InitiatingEvent” state declares the start of the SGTR, updates time on shift, then leads to the 
“DiagnoseSGTR” state via the two immediate actions modeled in the state. The “DiagnoseSGTR” and 
“MitigateSGTR” events are HRAEval events that use HUNTER. These states load the HUNTER 
functions for implementing SGTR procedures modeled in HUNTER (see Figure 45 and Figure 46), which 
include procedure steps and GOMS-HRA primitives, then simulate human actions relevant to diagnosing 
and mitigating the SGTR. These events calculate an elapsed time required to execute a procedure and 
have a list of actions. The “HepGTOneFailure”, “ HumanErrorFailure”, “OutofTimeFailure”, 
“OnRepeatFailure”, “MultipleFailure”, and “Success” actions represent different outcomes from the 
HUNTER simulation. Recall these outcomes from Section 5.2. A brief explanation on each state is 
repeated below:  

• “HepGTOneFailure”—An HEP is equal to or greater than 1.0 as a result of HUNTER simulation 
and cannot be completed 

• “HumanErrorFailure”—An HEP less than 1.0 was calculated, but the tasked failed due to chance 

• “OutofTimeFailure”—Human actions are not completed within the time window 
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• “OnRepeatFailure”—An HEP less than 1.0 was calculated and the task was repeated up to the 
MaxRepeat count but failed due to chance. 

• “MultipleFailure”—More than one failure type occurs. 

• “Success”—The success of diagnosis and mitigation of SGTR. 

In the EMRALD model each of these actions point to a key state followed by “Terminate” which 
ends the simulation run. 

 

 
Figure 45. Procedure contents coded for diagnosing SGTR within EMRALD-HUNTER 
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Figure 46. The procedure contents coded for mitigating SGTR within EMRALD-HUNTER 
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Figure 47 shows an example of simulation result of EMRALD-HUNTER SGTR model. All the runs 
discussed had a sampled starting time on shift with a mean of 4 hours and a standard deviation of 2 hours. 
With 1,000 trials, 962 cases (i.e., “EventResolved”) were successfully mitigated from SGTR, while 12 
cases resulted in failed scenarios (i.e., “OnRepeatFailure”) and 26 cases of overtime-based failure 
scenarios (i.e., “OutOfTimeFailure”) were observed. The failed scenarios refer to the failure cases caused 
by failure of GOMS-HRA primitive, while the overtime-based failure scenarios mean the failure cases 
that human actions are not finished within the time window.  

 

 

 
Figure 47. An example simulation result of the EMRALD-HUNTER SGTR model 

 

Table 12 summarizes the simulation outputs of the EMRALD-HUNTER SGTR model depending on 
stress and time pressure. The stress levels are used as inputs for the dynamic Stress PSF evaluation for the 
HEP, while Time Pressure affects the time calculation only. In the table, there are three major outputs 
from the model, i.e., the number of failed scenarios, HEPs, and overtime failure counts. HEPs are 
calculated by dividing the number of failed scenarios by the number of scenarios (i.e., the number of 
trials). For the number of failed scenarios and HEPs, these values increase for higher stress level. In 
contrast, the overtime failure counts increase much less than the number of failed scenarios and HEPs 
depending on the higher stress level. Regarding Time Pressure, it is mainly relevant to the elapsed time. 
Figure 48 shows the average elapsed time on Stress and Time Pressure across SGTR scenarios. The figure 
indicates that the Time Pressure option dominates elapsed time, while the Stress level affects it less. In 
Table 12, if the Time Pressure option is applied in the simulation, overtime failure results in a relatively 
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low value. The reduced elapsed time Time Pressure prevents errors due to overtime. On the other hand, if 
Time Pressure is not applied, the overtime failure count increases.   

 

Table 12. Simulation outputs of the EMRALD-HUNTER SGTR model for stress and time pressure 
 

Stress 
Time 

Pressure 
The Number of 
Failed Scenarios 

HEPs (The Number of 
Failed Scenarios / The 
Number of Scenarios) 

Overtime Failure 
Count 

Nominal Yes 38 3.800e-2 26 

No 322 3.220e-1 321 

High Yes 162 1.620e-1 28 

No 382 3.820e-1 335 

Extreme Yes 403 4.030e-1 32 

No 512 5.120e-1 512 

 

 

 

 
Figure 48. The elapsed time on stress level and time pressure in the SGTR scenarios 

 

7.3 Loss of Feedwater (LOFW) Scenario 
7.3.1 LOFW Description 

In a PWR, the feedwater of the secondary side plays an essential role in producing electricity. The 
feedwater receives heat from the primary side to produce steam that drives the generator. It is also 
important to ensure that the feedwater on the secondary side is available for decay heat removal after the 
reactor shuts down. However, failure to supply the feedwater can reduce heat transfer to the secondary 
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side from serving as a heat sink, which can lead to increased pressure and temperature of the RCS. Thus, 
the reactor is eventually tripped with the reactor high pressure or steam generator low level. To address 
this issue, most PWRs are equipped with an auxiliary feedwater system. An accident resulting from the 
failure to supply feedwater to the steam generator is known as loss of feedwater, which is one of the 
design basis accidents (DBA). 

In 1985, Davis-Besse Nuclear Power Plant experienced an actual LOFW accident at 90% operating 
power (U.S. Nuclear Regulatory Commission, 1985). At the time, one of two main feedwater pumps was 
in automatic control, and the other was in manual control. However, the automatic control pump stopped 
due to overspeed, leaving only the manually controlled pump operational. Furthermore, due to a spurious 
closure of the main steam isolation valve (MSIV), the turbine-driven main feedwater pump was unable to 
receive steam supply, rendering the redundant pump unusable as well. As a result, the plant experienced a 
loss of main feedwater. 

Upon detecting a reduction in the steam generator water level, the operator expected the auxiliary 
feedwater supply system to automatically activate. However, the operator manually operated it before the 
steam generator low-level setpoint was reached. Unfortunately, during this process, the operator 
mistakenly pressed the valve to isolate the auxiliary feedwater supply system. As a result, the auxiliary 
feedwater pumps also stopped due to overspeed, leading to a total loss of feedwater. In general, it was 
advisable to initiate automatic actuation manually when failure is imminent, but this case shows the 
occurrence of operator errors cannot be ignored. Such errors may result from a lack of understanding of 
the plant’s state or mistakes in performance. 

In the event of a potential boil dry situation caused by the LOFW, it was critical for the operator to 
quickly activate the auxiliary feedwater system. Fortunately, the operator responded promptly by resetting 
the control system and correcting the earlier error. However, the auxiliary feedwater valve that should 
have automatically reopened failed to open. Despite attempting to operate it manually from the main 
control panel, the valve remained unresponsive. At this critical juncture, the operator made the crucial 
decision to activate the startup feed pump. As it is motor-driven pump that does not require steam from 
the steam generator, it is a more reliable system for supplying feedwater. By supplying feedwater through 
the startup feed pump, the plant’s condition was stabilized. 

The operator was supposed to perform feed and bleed operation according to procedure. However, the 
operator deviated from the procedure by recovering the auxiliary feedwater system instead of performing 
feed and bleed. Although the operator should have followed the procedure, it was later confirmed this 
approach may be more cost-effective. Furthermore, as the pressure increased due to the reactor coolant 
system overheating and steam generator boiling dry, the pressurizer pilot operated relief valve (PORV) 
opened and closed twice without the operator’s knowledge. The PORV did not close completely, resulting 
in a section where the pressure rapidly decreased, which the operator failed to notice. Fortunately, the 
PORV was eventually closed properly, and no further problems occurred. Nevertheless, the operator's 
lack of awareness could have been a significant contributing factor to the incident. It was evident that 
several operator actions are necessary in the LOFW, highlighting the role of human factors.  

Similarly, the well-known Three Mile Island (TMI) accident was also triggered by LOFW, which led 
to loss of coolant Accident (LOCA) with a series of related complex events (U.S. Nuclear Regulatory 
Commission, 2022). The failure of both the main and auxiliary feedwater systems prevented the 
secondary side from being cooled, leading to automatic tripping of the turbine generator and the reactor, 
making heat removal difficult and increasing pressure in the primary system. In this case, the stuck open 
PORV caused the LOCA accident. These incidents also demonstrate the critical importance of 
understanding and addressing the role of operators in NPP events. 

 



 

 62 

 
Figure 49. Generic LOFW event tree (from Ma et al., 2019) 

 

 

Table 13. Event tree headings for LOFW (from Ma et al., 2019) 
 
Heading Description 

IE-LOFW Initiating event of loss of feedwater 

RTS Reactor trip  

AFW Supply of the auxiliary Feedwater system to steam generator 

PORV Close of pressurizer pilot operated relief valve (PORV)s 

LOSC Maintain of reactor coolant pump seal cooling 

HPI Injection of high-pressure safety injection system 

FAB Feed and bleed operation 

SSCR Recover of secondary side cooling 

SSC Cooldown of primary & secondary sides 

RHR Removal of residual heat 

HPR High pressure recirculation operation 
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7.3.2 LOFW PRA Modeling 
Figure 49 depicts the event tree for LOFW (Ma et al., 2019). The event tree comprises the initiating 

event and 10 event tree headings as shown in Table 13, and 13 sequences are analyzed based on these 
headings. The event tree illustrates how these scenarios can lead to either a stable state or core damage. 
Table 14 provides several HFEs considered in LOFW.  

 

Table 14. Generic human failure events in LOFW 
 
Index Description of Human Failure Events 

1 Operators fail to respond with RPS signal present.  

2 Operators fail to manually initiate AFW. 

3 Operators fail to trip reactor coolant pumps.  

4 Operators fail to depressurize RCS/secondary side (Rapid).  

5 Operators fail to initiate emergency boration.  

6 Operators fail to initiate feed and bleed cooling. 

7 Operators fail to initiate feed and bleed cooling (Depend). 

8 Operators fail to start high pressure recirculation.  

9 Operators fail to restore HTX 1A after test or maintenance.  

10 Operators fail to restore HTX 1B after test or maintenance.  

11 Operators fail to restore train P1A after test or maintenance.  

12 Operators fail to restore train P1B after test or maintenance.  

13 Operators fail to recover offsite power in 1 hr. 

14 Operators fail to align AC power given non-loss of offsite power LOOP IE.  

15 
Operators fail to control AFW turbine-driven pump (TDP) after battery depletion; Non-station 
blackout (SBO). 

 

The first scenario of the event tree is defined as a stable state where AFW can be successfully 
supplied to the steam generator, the PORVs are properly closed, and the reactor coolant pumps (RCPs) 
seal cooling is maintained after reactor trip (Scenario 1). Scenario 2 defines a situation where the PORVs 
are properly closed, but RCP seal cooling fails, leading to a LOCA. Scenarios 3 - 8 require high-pressure 
injection (HPI) due to an improperly open PORV and possible coolant leakage. If HPI fails, coolant 
leakage continues, resulting in core damage (scenario 8). If HPI is successful, the plant's stability depends 
on whether the primary and secondary side cooling systems can be successfully cooled down. If 
cooldown fails, but high-pressure recirculation (HPR) is successful, the plant may be stable (scenario 6). 
If HPR fails, the plant is defined as core damaged (scenario 7). If either the primary or secondary side 
cooldown is successful, with or without residual heat removal, the plant is considered stable (scenarios 3 
and 4). 
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In the event of LOFW, if the AFW system fails to supply feedwater, heat removal can still be 
achieved through feed and bleed operation. After successful feed and bleed operation, if neither secondary 
side cooling recovers and HPR fails, the plant is deemed core damaged (scenario 11). If either one 
succeeds, the plant is defined as stable state (scenarios 9 and 10). If the feed and bleed operation also 
fails, it results in core damage (scenario 12). In case the reactor trip fails, it is analyzed as at ATWS 
scenario. 

 

 

 
Figure 50. The EMRALD-HUNTER LOFW model 

 

 

 
Figure 51. The procedure contents coded for diagnosing LOFW within EMRALD-HUNTER 
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7.3.3 EMRALD-HUNTER LOFW Model 
This section introduces a LOFW model developed under EMRALD-HUNTER. Figure 50 (repeated 

from Figure 12) shows the EMRALD-HUNTER LOFW model. The diagram follows a similar scheme to 
the SGTR scenario described in Section 7.2.2. In the simulation for LOFW model, the file depicted in 
Figure 51 is  used to define the human actions for each step for diagnosing LOFW, while the rapid 
shutdown process similar to SGTR and represented earlier in Figure 46 is carried out to mitigate the 
LOFW. 

Table 15 summarizes the simulation outputs of the EMRALD-HUNTER LOFW model depending on 
stress and time pressure. Figure 52 indicates the average elapsed time on stress and time pressure in 
LOFW scenarios. These show similar tendencies in the outputs depending on the Stress level and Time 
Pressure option.  

 

Table 15. The simulation outputs of the EMRALD-HUNTER LOFW model depending on stress and time 
pressure 
 

Stress Time Pressure The Number of 
Failed Scenarios 

HEPs (The 
Number of 

Failed Scenarios 
/ The Number of 

Scenarios) 

Overtime Failure 
Count 

Nominal Yes 11 1.100e-2 8 

No 192 1.920e-1 192 

High Yes 73 7.300e-2 6 

No 227 2.270e-1 216 

Extreme Yes 272 2.720e-1 5 

No 346 3.460e-1 244 

 

 
Figure 52. The elapsed time on stress level and time pressure in LOFW scenarios 
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8. DISCUSSION 
This report has captured the coupling of EMRALD and HUNTER, providing an embedded tool for 

HRA to be used with dynamic PRA in EMRALD. The embedded version of HUNTER demonstrated the 
ability to simplify key features of HUNTER such as decision logic in the Task module or the linked plant 
model in the Environment module to allow it to function within the dynamic event scheduling provided 
by EMRALD. HUNTER embedded within HUNTER was able to use the existing interface in EMRALD 
with only minor additions, making HUNTER a seamlessly integrated addition to EMRALD.  

This report demonstrated the utility of EMRALD-HUNTER with two accident scenarios, SGTR and 
LOFW, which had previously also been run with the standalone version of HUNTER. The Monte Carlo 
runs in EMRALD readily produced HEPs and task durations. These can be compared to the results from 
the International HRA Empirical Study, published as several volumes of NUREG/IA-0216. NUREG/IA-
0216, Volume 2 (Bye et al., 2011) reviews the results from a large-scale simulator study for SGTR. The 
scenarios for diagnosing and mitigating the SGTR in EMRALD-HUNTER correspond to HFE-1A and 
HFE-2A as presented in Figure 53. The predicted HEPs from EMRALD-HUNTER for nominal Stress 
levels are shown as an orange rectangle and fall within the confidence bounds for the empirical data. 
These data suggest that EMRALD-HUNTER does a good job of predicting the HEPs within the modeled 
scenarios for SGTR.  Note that NUREG/IA-0216 does not break down task durations in a way that allows 
comparison between the empirical data and the predicted times from EMRALD-HUNTER. 

 

 
Figure 53. Empirical data for HEPs for SGTR overlaid with predicted HEPs from EMRALD-HUNTER  

 

NUREG/IA-0216 Vol. 2 

5-4 

 

Figure 5-3. Bayesian confidence bounds of the empirical HEPs vs all predicted HEPs 

As can be seen from the plot, many methods underestimated the HEPs for the most difficult 
HFEs (5B1 and 1B). This seems to be fairly systematic, and, in the following chapter, 
reasons for this are discussed for each of the methods. For the rest of the HFEs, nearly all 
predictions (mean values) fall within the Bayesian bounds. However, these bounds are very 
broad. 

Figure 5-3 also shows the limitations of the empirical HEPs for comparison with predicted 
HEPs. The detailed qualitative analysis suggests that these empirical distributions (which are 
based solely on the failure counts in number of runs) are not as informative as the difficulty 
ranking. As stated in Section 0, the difficulty ranking was: 

5B1 > 1B > 3B > 3A > [1A, 2A, 2B] > 5B2 > 4A       (from difficult to easy) 

1A, 2A, and 2B were considered equally difficult. This is in contrast to the empirical HEPs, in 
which 2B, 5B2, and 4A were all zero failure cases. In HFE 5B2, only 7 crews participated, in 
contrast to the 14 crews in the other HFEs. 

Overall, the qualitative findings (identification of issues, driving factors, etc.) are weighed 
more heavily in the evaluation than the quantitative performance. 
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Figure 54. Empirical data for HEPs for SGTR overlaid with predicted HEPs from EMRALD-HUNTER 

 

NUREG/IA-0216, Volume 3 (Dang et al., 2012) reports of the results of a related simulator study for 
LOFW. The scenarios modeled in EMRALD-HUNTER correspond to HFE-1A and HFE-2A shown in 
Figure 54. Due to a data constraint, the confidence bounds could not be determined for HFE-2A in 
NUREG/IA-0216, Volume 3. Nonetheless, as can be seen by the orange box in the figure, the predicted 
HEPs for LOFW with nominal Stress fall within the observed levels from the empirical data. The data 
suggest that EMRALD-HUNTER accurately predicts HEPs within the modeled scenarios for LOFW.  

While HUNTER provides new HRA functions to support EMRALD modeling, it must be noted that 
the embedded HUNTER represents a simplified variant of HUNTER. Development of the standalone 
version of HUNTER will continue to serve modeling efforts that: 

 

• Involve more realistic human performance modeling at the subtask level than is provided in the 
embedded version of HUNTER 

• Have a considerable number of procedures that would benefit from the procedure authoring tools 
in the full version of HUNTER 

• Consider the effects of deviations between work as imagined and work as done in procedure 
following 

• Require complex branching logic in procedures beyond what is supported in EMRALD-
HUNTER 
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Figure 5-3 Bayesian confidence bounds of the empirical HEPs vs. all predicted 

HEPs 
 
As can be seen from the plot, many methods underestimated the HEP for the most difficult 
HFE 1B. This seems to be fairly systematic, and, in the following section, reasons for this 
are discussed for each of the methods.  Nevertheless, it should be noted that the majority of 
the predictions were above 0.1, consistent with a high expectation of failure. 

 
At the same time, many methods overestimated the HEP for 2B. This is mainly due to the 
modelling of dependency, as discussed for each of the methods in the Section 6 
assessments, as well as in Section 7.2.  For HFE 1A, most of the methods had reasonable 
HEPs.  There is no data for 2A (the conditional HFE), since all crews succeeded in 1A. 

 
The joint HFEs, 1A1 and 1B1, were not used as extensively in the comparisons. The 
simulator observations, interpreted as failure counts for the joint HFEs, result in zero failures 
in ten observations for both joint HFEs. The corresponding confidence bounds for 1A1 and 
1B1 would be the same as for HFE 1A, that is, broad and therefore limited in providing 
insights, except to suggest some pessimism (if the method produces a mean value above 
the 95th percentile value of 0.17 for these joint HFEs).  Secondly, the empirical bounds for 
these HFEs do not discriminate between 1A1 and 1B1. On the other hand, the difficulty of 
1B1 relative to 1A1, considering when B&F is implemented relative to the procedural criteria 
and qualitative considerations, is unambiguous. 

 
Overall, the qualitative findings (identification of issues, driving factors, etc.) are weighed 
more heavily in the evaluation than the quantitative performance. 
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• Benefit from additional PSFs and modeling of additional effects of PSFs beyond task duration 
and HEPs 

• Use more frequently added new features including exploratory modeling aspects of HRA  

• Need an included plant simulation for modeling plant phenomena. 

 

At the same time, the embedded version of HUNTER affords numerous advantages, especially when 
looking for a streamlined version of HRA to add to dynamic PRA. The two versions of HUNTER can 
readily co-exist. Figure 55 provides a comparison table to assist in understanding when EMRALD-
HUNTER vs. standalone HUNTER might be most appropriate. 

 

 

  
Use EMRALD-HUNTER Use standalone HUNTER 

• When you wish to add HRA to EMRALD 
models 

• When you are analyzing human actions at 
the HFE level 

• When you are primarily interested in task 
duration and error for human actions 

• When you want to use external libraries  
and features linked to EMRALD 

• When you are exploring psychological 
phenomena behind human actions 

• When you are analyzing human actions at 
the task or subtask level 

• When you are interested in performance 
measures beyond task duration and error 

• When you are developing human event 
sequences for later use in EMRALD 

• When you are analyzing and optimizing 
procedures for human event sequences 

Figure 55. Guidance on when to use EMRALD-HUNTER vs. the standalone version of HUNTER 

 

This report chronicles initial features of HUNTER embedded into EMRALD and the successful 
demonstration of EMRALD-HUNTER. Additional testing and demonstration of EMRALD-HUNTER is 
planned beyond the SGTR and LOFW scenarios presented in this report. For example, significant 
modeling work has already been done using EMRALD for HRA modeling with FLEX emergency 
mitigation (Park et al., 2021) and physical security (Christian et al., 2023). The integration of HUNTER 
into EMRALD is informed by these earlier efforts and the challenges that were incurred in modeling 
HRA efficiently without a specific HRA module in EMRALD. Revisiting earlier analyses with the 
embedded HUNTER functionality would be a good place to see the benefits of the new approach. As 
additional use cases and demonstrations are explored, the development team represented in this report 
will consider desirable new features to incorporate into future versions of EMRALD-HUNTER. 
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